<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>
1. Suppose you have an urn containing one nickel, three dimes, and one quarter, and you randomly pick two coins out of the urn. Let \(X \) be the value of the two coins. Write down the probability density function and \(E(X) \).

(14 points)

2. If you invest $600 at 9\% annual interest, how much money do you have at the end of 4 years if

(12 points, 3 each)

a) It is simple interest.

b) It is compounded yearly.

c) It is compounded quarterly.

d) It is compounded monthly.

3. What is the effective interest rate of 200\% annual interest compounded a) semi-annually b) weekly.

(8 points, 4 each)
4. If you want to end up with $30,000 in 3 years by making monthly deposits at 3% interest compounded monthly, how much should those monthly payments be?
(8 points)

5. If you get a loan of $30,000 to be paid off in 4 years by making monthly payments at 5% interest compounded monthly, a) how much are those monthly payments? b) How much interest will you pay?
(8 points)

6. If your mother loans you $1000, the interest to be compounded annually, and you pay her back $27,000 in three years. What was the annual interest rate?
(6 points)

7. Solve by graphing.
(8 points)

\[
2x + 4y = 2 \\
6x + 3y = -3
\]
8. Solve any way you want.
(12 points, 6 each)
 a)
 \[3x_1 + 2x_2 = 7\]
 \[5x_1 + 3x_2 = 11\]

 b)
 \[x_1 + x_2 + 3x_3 = 3\]
 \[x_1 + 3x_2 + 3x_3 = 2\]

9. Solve the equations using Gauss–Jordan elimination
(16 points, a)=6 points, b)=10 points)
 a)
 \[x_1 + 3x_2 = 1\]
 \[3x_1 + 7x_2 = 1\]

 b)
 \[x_1 + 2x_2 + 3x_3 = 3\]
 \[x_1 + 3x_2 + 2x_3 = 1\]
 \[x_1 + 2x_2 + 4x_3 = 4\]