Answers of some homework problems 2.1-2.8

2.1.4. (b) The slope is \(\frac{1}{2} \).
(c) The equation is \(y - \ln 2 = \frac{1}{2} (x - 2) \).

2.1.6. The average velocity between \(t \) and \(t + h \) seconds is
\[
\frac{58(t + h) - 0.83(t + h)^2 - (58t - 0.83t^2)}{h} = \ldots = 58 - 1.68t - 0.83h, \ h \neq 0.
\]
(a) Here \(t = 1 \), so for (i) we have \([1, 2] \): \(h = 1, 55.51 \text{ m/s, etc.} \)
(b) The instantaneous velocity after 1 second is 56.34 m/s.

2.2.16. The limit \(\lim_{x \to -1} \frac{x^2 - 2x}{x^2 - x - 2} \) does not exist.

2.2.24. We have \(\lim_{x \to 5^-} 6x - 5 = -\infty \) since \((x - 5) \to \infty \) as \(x \to 5^- \) and \(\frac{6}{x - 5} < 0 \).

2.2.30. We have \(\lim_{x \to -5^+} \ln(x - 5) = -\infty \) since \(x - 5 \to 0^+ \) as \(x \to 5^+ \).

2.3.6. After applying the corresponding Limit Laws we find that the limit is 256.

2.3.14. We find
\[
\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4} = \lim_{x \to 4} \frac{x}{x + 1} = \frac{4}{5}.
\]

2.3.22. We have
\[
\lim_{h \to 0} \frac{\sqrt{1 + h} - 1}{h} = \lim_{h \to 0} \frac{\sqrt{1 + h} - 1}{h} \cdot \frac{\sqrt{1 + h} + 1}{\sqrt{1 + h} + 1} = \ldots = \lim_{h \to 0} \frac{1}{\sqrt{1 + h} + 1} = \frac{1}{2}.
\]

2.3.26. We have
\[
\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t^2 + 1} \right) = \lim_{t \to 0} \frac{t}{t(t^2 + 1)} = \lim_{t \to 0} \frac{1}{t + 1} = 1.
\]

2.3.30. Solved in class.

2.3.38. Since \(-1 \leq \sin(\pi/x) \leq 1\) we have
\[
\sqrt{x}/e \leq \sqrt{x}e^{\sin(\pi/x)} \leq \sqrt{x}e.
\]
Now, the Squeeze Theorem implies \(\lim_{x \to 0} \sqrt{x}e^{\sin(\pi/x)} = 0 \).

2.3.42. The limit does not exist (solved in class).

2.4.20. Given \(\epsilon > 0 \) we must find \(\delta > 0 \), such that, if \(0 < |x - 6| < \delta \), then \(\left| \frac{x}{4} + 3 - \frac{x}{2} \right| < \epsilon \). Equivalently we have that \(0 < |x - 6| < \delta \) implies \(|x - 6| < 4\epsilon \). So, we choose \(\delta := 4\epsilon \). Then... (as in class).
2.4.26. Given \(\varepsilon > 0 \) we must find \(\delta > 0 \), such that, if \(0 < |x - 60| < \delta \), then \(|x^3 - 0| < \varepsilon \). Then (solved in class) choose \(\delta := \sqrt[3]{\varepsilon} \).

2.4.28. Given \(\varepsilon > 0 \) we must find \(\delta > 0 \) such that if \(9 - \delta < x < 9 \) then \(|\sqrt{9} - x - 0| < \varepsilon \). Also solved in class: we choose \(\delta := \varepsilon^4 \).

2.4.30. Solved in class.

2.5.12. We have
\[
\lim_{x \to 4} g(x) = \lim_{x \to 4} \frac{x + 1}{2x^2 - 1} = ... = \frac{5}{31} = g(1).
\]
Therefore, \(g \) is continuous at \(a = 4 \).

2.5.18. We find that
\[
\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - x}{x^2 - 1} = ... = \frac{1}{2} \neq f(1).
\]
Therefore, \(f \) is discontinuous at \(a = 1 \).

2.5.20. We have \(\lim_{x \to 1^-} f(x) = 2 \) and \(\lim_{x \to 1^+} f(x) = 3 \). Therefore, \(f \) is discontinuous at \(a = 1 \), because \(\lim_{x \to 1} f(x) \) does not exist.

2.5.22. The root function \(\sqrt{x} \) and the polynomial function \(1 + x^3 \) are continuous on \(\mathbb{R} \). Therefore (part 4 of Theorem 4 in the book), the product \(G(x) = \sqrt{x}(1 + x^3) \) is continuous on its domain \(\mathbb{R} \).

2.5.26. By Theorem 5 in the book, the polynomial \(x^2 - 1 \) is continuous on \(\mathbb{R} \). By Theorem 7 in the book, the inverse trigonometric function \(\sin^{-1} \) is continuous on \([-1, 1]\). Therefore (Theorem 9 in the book), the composition \(\sin^{-1}(x^2 - 1) \) is continuous on its domain \([-\sqrt{2}, \sqrt{2}]\).

2.5.38. The function \(f \) is continuous at every point except at 1 and 3. Although it is discontinuous at 3, \(f \) is continuous from the right at 3. Furthermore, \(f \) is continuous from the right at 1.

2.6.16. Dividing the numerator and the denominator by \(x^2 \) we find
\[
\lim_{y \to \infty} \frac{2 - 3y^2}{5y^2 + 4y} = \lim_{y \to \infty} \frac{2/y^2 - 3}{5 + 4/y} = ... = \frac{-3}{5}.
\]

2.6.20. Dividing the numerator and the denominator by \(x \) we find
\[
\lim_{x \to \infty} \frac{x + 2}{\sqrt{9x^2 + 1}} = \lim_{x \to \infty} \frac{1 + 2/x}{\sqrt{9 + 1/x^2}} = \frac{1}{3}.
\]

2.6.24. Solved in class. The answer is \(-1\). Keep in mind (me too!) that if \(x \to -\infty \), then \(\sqrt{x^2} = -x \).

2.6.26. The limit \(\lim_{x \to \infty} \cos x \) does not exist.
2.6.28. We have that $\sqrt[3]{x}$ is arbitrarily small (large negative) as x is sufficiently small (large negative). Thus $\lim_{x \to -\infty} \sqrt[3]{x} = -\infty$.

2.6.30. Dividing the numerator and the denominator by x^3 we find

$$\lim_{x \to -\infty} \frac{x^3 - 2x + 3}{5 - 2x^2} = \lim_{x \to -\infty} \frac{x - 2x + 3/x^3}{5/x^2 - 2} = -\infty,$$

because the numerator of the last limit approaches ∞ and the denominator approaches -2 as $x \to -\infty$.

2.6.38. The vertical asymptotes are $x = 1$ and $x = -1$. The horizontal asymptote is $y = 1$.

2.6.42. The horizontal asymptotes are $y = -\frac{1}{2}$ and $y = \frac{1}{2}$. There are no vertical asymptotes.

2.6.64. Given $M > 0$ we must find $N > 0$ such that if $x > N$ then $x^3 > M$. As we solved in class, we choose $N := \sqrt[3]{M}$.

2.7.8. We find that

$$m = \lim_{x \to 4} \frac{\sqrt{2x + 1} - \sqrt{2(4) + 1}}{x - 4} = \lim_{x \to 4} \frac{\sqrt{2x + 1} - 3}{x - 4} \cdot \frac{\sqrt{2x + 1} + 3}{\sqrt{2x + 1} + 3} = \frac{1}{3}.$$

Therefore, the tangent line is $y - 3 = \frac{1}{3}(x - 4)$.

2.7.10. We find that

$$m = \lim_{x \to 0} \frac{2x}{x + 1} - \frac{0}{x - 0} = \lim_{x \to 0} \frac{2}{(x + 1)^2} = 2.$$

Therefore the tangent line is $y - 0 = 2(x - 0)$, or $y = 2x$.

2.7.18. (b) We have

$$v(a) = \lim_{h \to 0} \frac{H(a + h) - H(a)}{h} = \lim_{h \to 0} \frac{58a + 58h - 0.83a^2 - 1.66ah - 0.83h^2 - (58a - 0.83a^2)}{h} = 58 - 1.66a$$

(c) $t = \frac{58}{0.83}$

(d) $v(\frac{58}{0.83}) = -58$ m/s.

2.7.20. The average velocity between times t and $t + h$ is

$$\frac{s(t + h) - s(t)}{(t + h) - t} = \ldots = (2t + h - 8) \text{ m/s}$$

(i) $[3,4]: t = 3, h = 1$, so the average velocity is $2(3) + 1 - 8 = -1$ m/s...

(b) $v(t) = 2t - 8, v(4) = 0$.

2.8.13. We have

$$f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \lim_{h \to 0} \frac{3(a + h) + 4(a + h)^2}{h} = -2 + 8a.$$
2.8.14. We have
\[f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \lim_{h \to 0} \frac{((a + h)^4 - 5(a + h)) - (a^4 - 5a)}{h} = ... = 4a^3 - 5. \]
Here we use the fact that \(x^4 - y^4 = (x^2 - y^2)(x^2 + y^2) = (x - y)(x + y)(x^2 + y^2) \).

2.8.16. We have
\[f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \lim_{h \to 0} \frac{(a + h)^{2+1} - a^{2+1}}{h - a - 2} = ... = \frac{a^2 - 4a - 1}{(a - 2)^2}. \]

2.8.18. We have
\[f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \lim_{h \to 0} \frac{\sqrt{3(a + h)} - 1 - \sqrt{3a - 1}}{h} = ... = \frac{3}{2\sqrt{3a + 1}}. \]

2.8.20. The answer is \(f'(a) \), where: \(f(x) = \sqrt[3]{x}, a = 16 \).

2.8.22. The answer is \(f'(a) \), where: \(f(x) = \tan x, a = \frac{\pi}{4} \).

2.8.24. The answer is \(f'(a) \), where: \(f(t) = t^4 + t, a = 1 \).