Notes on limits and continuity
Math 112

In this handout, we take another look at limits that may make the differences between the one- and two-variable situations a little clearer. To be somewhat formal for a moment, the definition of limit in terms of sequences is:

Definition. We say that a sequence $x = (x_1, x_2, \ldots)$ in \mathbb{R}^n approaches a point a in \mathbb{R}^n if, given any neighborhood $D_r(a)$ of a, x is eventually contained in $D_r(a)$ (i.e., all but many points of x are contained in $D_r(a)$).

Definition. The function $f : A \subseteq \mathbb{R}^2 \to \mathbb{R}$ has a limit L at the point (a, b), written

$$\lim_{(x, y) \to (a, b)} f(x, y) = L,$$

if, for any sequence (x, y) in A that approaches, but never reaches, (a, b) along any route/path, the value of $f(x, y)$ must approach L. In other words, to say that $\lim_{(x, y) \to (a, b)} f(x, y) = L$ means that if $(x, y) \to (a, b)$ with (x, y) never equal to (a, b), then we must have $f(x, y) \to L$.

The technical aspects of the term “approach” aside, hopefully the main idea is clear: For $f(x, y)$ to have a limit L at (a, b), the values of $f(x, y)$ must approach L as (x, y) approaches (but does not reach) (a, b), no matter how (x, y) approaches (a, b). Note that it follows that if we can find at least one way to approach (a, b) along which the values of f do not approach L, then f cannot have a limit of L at (a, b).

Here’s an important example to keep in mind. Let f be defined by:

$$f(x, y) = \begin{cases} 1 & \text{if } 0 < y < x^2; \\ 0 & \text{otherwise.} \end{cases}$$

Note that the inequalities in the definition of f are all “less than” and not “less than or equal to.”

The function f is perhaps best understood from its contour diagram:
Here, the shaded region is where $f(x, y) = 1$, and the unshaded region (including the
curve $y = x^2$ and the entire x-axis) is where $f(x, y) = 0$.

Now, since $f(0, 0) = 0$, if f were continuous at $(0, 0)$, then $f(x, y)$ would have to
approach 0 as (x, y) approaches the origin by any route. However, if (x, y) approaches
the origin by a route that stays in the shaded region (e.g., along the curve $y = x^2/2$),
then $f(x, y)$ remains constant at 1 and therefore does not approach 0. It follows that
f is not continuous at $(0, 0)$. In fact, since we may also approach the origin by a
route along which $f(x, y) = 0$ (e.g., along the y-axis), we can actually conclude that
\[
\lim_{(x, y) \to (0,0)} f(x, y)
\]
does not exist, as such a limit would have to be both 0 and 1.

On the other hand, note that if we approach the origin along \textit{any} straight-line
path, then the value of $f(x, y)$ will eventually become 0 at some distance away from
the origin (why?), so if we only consider straight-line approaches, it looks like $f(x, y)$
is continuous. Again, the fundamental point is that to understand a function of two
variables at a point (a, b), it is not enough to look at $f(x, y)$ as (x, y) approaches (a, b)
along (for instance) straight lines; you have to look at what happens to $f(x, y)$ as
(x, y) approaches (a, b) in an \textit{arbitrary} (straight, curved, spiral, etc.) way. Later on in
Chapter 2, we will see that this is precisely the limitation of looking at multivariable
functions one variable at a time: namely, that change can occur along paths that
cannot be understood by considering only one variable at a time. To repeat:

\textbf{It is not enough to consider one variable at a time.}