Midterm 1 Solutions

Section 05

<table>
<thead>
<tr>
<th>Score</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
1. **(25 points)** Consider a differential equation

\[yy' - 2xe^{-y} = 0. \]

(1)

(a) If \(x_0 \neq 0 \), show that (1) cannot possibly have a solution defined in a neighborhood of \(x_0 \) that satisfies \(y(x_0) = 0 \).

(b) Find an implicit solution satisfying \(y(0) = 0 \).

Solution:

(a) If \(y \) were a solution to (1) satisfying \(y(x_0) = 0 \), then since \(e^0 = 1 \),

\[0 \cdot y'(x_0) - 2x_0 = 0, \]

which is impossible if \(x_0 \neq 0 \).

(b) Separating the variables we obtain

\[\int ye^y \, dy = \int 2x \, dx. \]

The right hand side equals \(x^2 + C \). The left hand side can be solved by integration by parts: \(u = y, \, dv = e^y \, dy, \, du = dy, \, v = e^y \, dy \):

\[\int ye^y \, dy = ye^y - e^y. \]

Setting \(y(0) = 0 \), we obtain

\[C = -1. \]

Therefore, an implicit solution satisfying \(y(0) = 0 \) is

\[ye^y - e^y = x^2 - 1. \]
2. (25 points) Consider a differential equation

\[(3x^2 + y) \, dx + (x^2y - x) \, dy = 0. \tag{2}\]

(a) Show that equation (2) is not exact.
(b) Find an integrating factor \(\mu\) that depends only on \(x\) or only on \(y\), and solve the equation.

Solution: (a) Since

\[\frac{\partial}{\partial y}(3x^2 + y) = 1 \neq 2xy - 1 = \frac{\partial}{\partial x}(x^2y - x),\]

the equation is not exact.

(b) Let’s try to find an integrating factor \(\mu = \mu(x)\). Let

\[\tilde{M}(x, y) = \mu(x)(3x^2 + y), \quad \tilde{N}(x, y) = \mu(x)(x^2y - x).\]

We have

\[\frac{\partial \tilde{M}}{\partial y} = \mu(x) \quad \text{and} \quad \frac{\partial \tilde{N}}{\partial x} = \mu'(x)(x^2y - x) + \mu(x)(2xy - 1).\]

Requiring \(\partial \tilde{M}/\partial y = \partial \tilde{N}/\partial x\) gives us a differential equation for \(\mu\):

\[\mu(x) = \mu'(x)(x^2y - x) + \mu(x)(2xy - 1).\]

Simplifying, we obtain

\[\mu'(x) = -\frac{2\mu(x)}{x},\]

so

\[\mu(x) = x^{-2}.\]

Multiplying the original equation by \(\mu(x)\), we get an exact equation:

\[\left(3 + \frac{y}{x^2}\right) \, dx + \left(y - \frac{1}{x}\right) \, dy = 0.\]

Integration of \(\tilde{M}\) with respect to \(x\) yields

\[F(x, y) = 3x - \frac{y}{x} + g(y),\]

and a differentiation with respect to \(y\) gives us

\[g'(y) = y.\]

So \(g(y) = y^2/2\) and the desired implicit solution to (2) is

\[F(x, y) = 3x - \frac{y}{x} + \frac{y^2}{2} \equiv C.\]

Note that the \(y\)-axis \(x = 0\) is also a solution curve for (2).
3. (25 points) Using an appropriate substitution, find the solution to

\[y' + y = e^x y^{-2} \]

satisfying

\[y(0) = \left(\frac{3}{4} \right)^{1/3}. \]

Solution: This is a *Bernoulli equation* with \(n = -2 \). The appropriate substitution is

\[v = y^{1-n} = y^3. \]

Then

\[v' = 3y^2 y'. \]

If we multiply the original equation by \(3y^2 \), we obtain

\[3y^2 y' + 3y^3 = 3e^x, \]

which is equivalent to a *linear equation*

\[v' + 3v = 3e^x. \]

The integrating factor for this equation is

\[\mu(x) = e^{\int P(x) \, dx} = e^{3x}. \]

Therefore,

\[v = e^{-3x} \left(\int e^{3x} \cdot 3e^x \, dx + C \right) \]

\[= \frac{3}{4} e^x + Ce^{-3x}. \]

Taking the cube root, we get

\[y = v^{1/3} = \left(\frac{3}{4} e^x + Ce^{-3x} \right)^{1/3}. \]

Since \(y(0) = (3/4)^{1/3} \), we obtain \(C = 0 \), so the solution to the initial value problem is

\[y = \left(\frac{3}{4} e^x \right)^{1/3}. \]
4. (25 points) (a) Show that all curves in the one-parameter family

\[x^2 + Cy^2 = 1 \]

are implicit solutions to the differential equation

\[y' = \frac{xy}{x^2 - 1}. \]

(b) Write a differential equation satisfied by the curves orthogonal to the family (3). Find an (algebraic) equation for those curves.

Solution: (a) Differentiating implicitly we get

\[2x + 2Cyy' = 0. \]

If we solve for \(y' \), we obtain

\[y' = -\frac{x}{Cy} = -\frac{xy}{Cy^2} = -\frac{xy}{1-x^2} = \frac{xy}{x^2 - 1}. \]

(b) The slope of the orthogonal curves is the negative reciprocal of the slope of the original curves, so the differential equation for the orthogonal curves is

\[y' = -\frac{x^2 - 1}{xy}. \]

Separating the variables we obtain

\[\int y \, dy = \int \left(\frac{1}{x} - x \right) \, dx, \]

\[\frac{y^2}{2} = \log |x| - \frac{x^2}{2} + C. \]