For $n \times n$ matrices A and B, and $n \times 1$ column matrices C, D, and X, solve the following matrix equation assuming that all necessary inverses exist:

$$AX + C = BX + D.$$

Solution: Subtracting $C + BX$ from both sides, we obtain

$$AX - BX = D - C.$$

By the distributive property, the left hand side is equal to $(A - B)X$, so

$$(A - B)X = D - C.$$

Assuming $A - B$ is invertible, we can multiply both sides by $(A - B)^{-1}$:

$$(A - B)^{-1}(A - B)X = (A - B)^{-1}(D - C),$$

$$IX = (A - B)^{-1}(D - C),$$

$$X = (A - B)^{-1}(D - C),$$

since $IX = X$.