Find all equilibrium solutions of the given differential equation and determine if they are sinks, sources, or neither:

\[x' = x^4 - x^2. \]

SOLUTION: The equilibria are solutions to \(x^4 - x^2 = 0 \), i.e., \(x = -1, 0, 1 \). Let \(f(x) = x^4 - x^2 \). Then \(f(x) > 0 \) for \(x \in (-\infty, -1) \) and \(x \in (1, \infty) \), and \(f(x) < 0 \) for \(x \in (-1, 0) \) and \(x \in (0, 1) \). It follows that the phase line looks like this:

\[\begin{array}{c}
-1 & \quad 0 & \quad 1 \\
\end{array} \]

Therefore, \(-1\) is a sink, \(1\) is a source, and \(0\) is neither. The first two statements also follow from the derivative test \((f'(-1) < 0 \text{ and } f'(1) > 0)\), but **not** the last one! Here’s why:

Example 1. Consider \(x' = x^3 \). Let \(f(x) = x^3 \). Then \(0 \) is the only equilibrium, and since \(f(x) < 0 \) for \(x < 0 \) and \(f(x) > 0 \) for \(x > 0 \), it is a source, even though \(f'(0) = 0 \).

Example 2. \(0 \) is a sink for \(x' = -x^3 \), even though \(f'(0) = 0 \) (where \(f(x) = -x^3 \)).