• SJSU Singular Matrix Database
  • Matrix group: Boeing
  • Click here for a description of the Boeing group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups


  • Matrix: Boeing/nasa2910
  • Description: STRUCTURE FROM NASA LANGLEY, 2910 DEGREES OF FREEDOM
  • download as a MATLAB mat-file, file size: 99 KB. Use SJget(343) or SJget('Boeing/nasa2910') in MATLAB.
  • download in Matrix Market format, file size: 195 KB.
  • download in Rutherford/Boeing format, file size: 54 KB.

    Boeing/nasa2910

    Routine svd from Matlab 7.6.0.324 (R2008a) used to calculate the singular values.

    Boeing/nasa2910

    Matrix properties (click for a legend)  
    number of rows2,910
    number of columns2,910
    structural full rank?yes
    structural rank2,910
    numerical rank 1,623
    dimension of the numerical null space1,287
    numerical rank / min(size(A))0.55773
    Euclidean norm of A 77.616
    calculated singular value # 16230.0025304
    numerical rank defined using a tolerance
    max(size(A))*eps(norm(A)) =
    4.1354e-011
    calculated singular value # 16249.3945e-014
    gap in the singular values at the numerical rank:
    singular value # 1623 / singular value # 1624
    2.6935e+010
    calculated condition number2.1535e+112
    condestInf
    nonzeros174,296
    # of blocks from dmperm1
    # strongly connected comp.1
    entries not in dmperm blocks0
    explicit zero entries0
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typebinary
    structuresymmetric
    Cholesky candidate?yes
    positive definite?no

    authorR. Grimes
    editorT. Davis
    date1995
    kindduplicate structural problem
    2D/3D problem?yes
    SJid343
    UFid364

    Notes:

    Boeing/nasa2910 is the nonzero pattern of Nasa/nasa2910.
    

    Ordering statistics:AMD METIS
    nnz(chol(P*(A+A'+s*I)*P'))202,288 230,213
    Cholesky flop count2.1e+007 2.6e+007
    nnz(L+U), no partial pivoting401,666 457,516
    nnz(V) for QR, upper bound nnz(L) for LU401,991 417,102
    nnz(R) for QR, upper bound nnz(U) for LU1,098,730 1,032,180

    Maintained by Leslie Foster, last updated 24-Apr-2009.

    Entries 5 through 14 in the table of matrix properties and the singular
    value plot were created using SJsingular code. The other plots
    and statistics are produced using utilities from the SuiteSparse package.
    Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.