• SJSU Singular Matrix Database
  • Matrix group: Boeing
  • Click here for a description of the Boeing group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups


  • Matrix: Boeing/nasa4704
  • Description: STRUCTURE FROM NASA LANGLEY, 4704 DEGREES OF FREEDOM
  • download as a MATLAB mat-file, file size: 98 KB. Use SJget(390) or SJget('Boeing/nasa4704') in MATLAB.
  • download in Matrix Market format, file size: 113 KB.
  • download in Rutherford/Boeing format, file size: 55 KB.

    Boeing/nasa4704

    Routine svd from Matlab 7.6.0.324 (R2008a) used to calculate the singular values.

    Boeing/nasa4704

    Matrix properties (click for a legend)  
    number of rows4,704
    number of columns4,704
    structural full rank?yes
    structural rank4,704
    numerical rank 2,264
    dimension of the numerical null space2,440
    numerical rank / min(size(A))0.48129
    Euclidean norm of A 27.081
    calculated singular value # 22640.0031203
    numerical rank defined using a tolerance
    max(size(A))*eps(norm(A)) =
    1.6712e-011
    calculated singular value # 22654.1934e-014
    gap in the singular values at the numerical rank:
    singular value # 2264 / singular value # 2265
    7.441e+010
    calculated condition number4.3471e+207
    condestInf
    nonzeros104,756
    # of blocks from dmperm1
    # strongly connected comp.1
    entries not in dmperm blocks0
    explicit zero entries0
    nonzero pattern symmetrysymmetric
    numeric value symmetrysymmetric
    typebinary
    structuresymmetric
    Cholesky candidate?yes
    positive definite?no

    authorR. Grimes
    editorT. Davis
    date1995
    kindduplicate structural problem
    2D/3D problem?yes
    SJid390
    UFid365

    Notes:

    Boeing/nasa4704 is the nonzero pattern of Nasa/nasa4704.
    

    Ordering statistics:AMD METIS
    nnz(chol(P*(A+A'+s*I)*P'))283,225 305,958
    Cholesky flop count3.7e+007 3.8e+007
    nnz(L+U), no partial pivoting561,746 607,212
    nnz(V) for QR, upper bound nnz(L) for LU671,166 529,249
    nnz(R) for QR, upper bound nnz(U) for LU1,320,652 1,022,642

    Maintained by Leslie Foster, last updated 24-Apr-2009.

    Entries 5 through 14 in the table of matrix properties and the singular
    value plot were created using SJsingular code. The other plots
    and statistics are produced using utilities from the SuiteSparse package.
    Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.