• SJSU Singular Matrix Database
• Matrix group: Cunningham
• Click here for a description of the Cunningham group.
• Click here for a list of all matrices
• Click here for a list of all matrix groups

• Matrix: Cunningham/m3plates
• Description: FE mass matrix, 3 plates meeting at a line. A. Cunningham
• download as a MATLAB mat-file, file size: 39 KB. Use SJget(285) or SJget('Cunningham/m3plates') in MATLAB.
• download in Matrix Market format, file size: 55 KB.
• download in Rutherford/Boeing format, file size: 62 KB.

A singular value of A is guaranteed1 to be in the interval pictured by the blue bars around each of the calculated singular values.

Routine svds_err, version 1.0, used with Matlab 7.6.0.324 (R2008a) to calculate the 6 largest singular values and associated error bounds.
Routine spnrank, version 1.0, used with Matlab 7.6.0.324 (R2008a) to calculate singular values 6637 to 6642 and associated error bounds.   Matrix properties (click for a legend) number of rows 11,107 number of columns 11,107 structural full rank? no structural rank 6,639 numerical rank 6,639 dimension of the numerical null space 4,468 numerical rank / min(size(A)) 0.59773 Euclidean norm of A 0.16281 calculated singular value # 6639 0.011496 numerical rank defined using a tolerance max(size(A))*eps(norm(A)) = 3.0828e-013 calculated singular value # 6640 3.0292e-028 gap in the singular values at the numerical rank: singular value # 6639 / singular value # 6640 3.7949e+025 calculated condition number -2 condest Inf nonzeros 6,639 # of blocks from dmperm 6,641 # strongly connected comp. 11,107 explicit zero entries 0 nonzero pattern symmetry symmetric numeric value symmetry symmetric type real structure symmetric Cholesky candidate? yes positive definite? no

 author A. Cunningham editor T. Davis date 2002 kind acoustics problem 2D/3D problem? yes SJid 285 UFid 843

 Ordering statistics: AMD METIS nnz(chol(P*(A+A'+s*I)*P')) 11,107 11,107 Cholesky flop count 1.1e+004 1.1e+004 nnz(L+U), no partial pivoting 11,107 11,107 nnz(V) for QR, upper bound nnz(L) for LU 11,107 11,107 nnz(R) for QR, upper bound nnz(U) for LU 11,107 11,107

Maintained by Leslie Foster, last updated 24-Apr-2009.

Entries 5 through 14 in the table of matrix properties and the singular
value plot were created using SJsingular code. The other plots
and statistics are produced using utilities from the SuiteSparse package.
Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.