• SJSU Singular Matrix Database
  • Matrix group: Hollinger
  • Click here for a description of the Hollinger group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups


  • Matrix: Hollinger/g7jac020
  • Description: Jacobian from CEPII's 'G7marmotte' OLG model, oldstack 020
  • download as a MATLAB mat-file, file size: 369 KB. Use SJget(378) or SJget('Hollinger/g7jac020') in MATLAB.
  • download in Matrix Market format, file size: 445 KB.
  • download in Rutherford/Boeing format, file size: 390 KB.

    Hollinger/g7jac020

    Routine svd from Matlab 7.6.0.324 (R2008a) used to calculate the singular values.

    Hollinger/g7jac020

    dmperm of Hollinger/g7jac020

    scc of Hollinger/g7jac020

    Matrix properties (click for a legend)  
    number of rows5,850
    number of columns5,850
    structural full rank?yes
    structural rank5,850
    numerical rank 4,488
    dimension of the numerical null space1,362
    numerical rank / min(size(A))0.76718
    Euclidean norm of A 1.8445e+007
    calculated singular value # 44882.1906e-005
    numerical rank defined using a tolerance
    max(size(A))*eps(norm(A)) =
    2.1793e-005
    calculated singular value # 44892.1523e-005
    gap in the singular values at the numerical rank:
    singular value # 4488 / singular value # 4489
    1.0178
    calculated condition number5.3126e+016
    condest2.8966e+017
    nonzeros42,568
    # of blocks from dmperm317
    # strongly connected comp.177
    entries not in dmperm blocks1,195
    explicit zero entries2,897
    nonzero pattern symmetry 6%
    numeric value symmetry 0%
    typereal
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorP. Hollinger
    editorT. Davis
    date2001
    kindeconomic problem
    2D/3D problem?no
    SJid378
    UFid547

    Ordering statistics:AMD METIS DMPERM+
    nnz(chol(P*(A+A'+s*I)*P'))494,583 496,193 467,732
    Cholesky flop count1.6e+008 1.4e+008 1.3e+008
    nnz(L+U), no partial pivoting983,316 986,536 930,809
    nnz(V) for QR, upper bound nnz(L) for LU505,338 374,121 379,347
    nnz(R) for QR, upper bound nnz(U) for LU966,471 773,254 812,888

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 2897 explicit zero entries.

    Maintained by Leslie Foster, last updated 24-Apr-2009.

    Entries 5 through 14 in the table of matrix properties and the singular
    value plot were created using SJsingular code. The other plots
    and statistics are produced using utilities from the SuiteSparse package.
    Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.