• SJSU Singular Matrix Database
  • Matrix group: JGD_Franz
  • Click here for a description of the JGD_Franz group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups

  • Matrix: JGD_Franz/Franz9
  • Description: Cohomology of various rings, from Matthias Franz, Univ. Konstanz, Germany
  • download as a MATLAB mat-file, file size: 194 KB. Use SJget(685) or SJget('JGD_Franz/Franz9') in MATLAB.
  • download in Matrix Market format, file size: 272 KB.
  • download in Rutherford/Boeing format, file size: 247 KB.


    Routine svd from Matlab (R2008a) used to calculate the singular values.


    Matrix properties (click for a legend)  
    number of rows19,588
    number of columns4,164
    structural full rank?yes
    structural rank4,164
    numerical rank 3,545
    dimension of the numerical null space619
    numerical rank / min(size(A))0.85134
    Euclidean norm of A 17.436
    calculated singular value # 35452.8817
    numerical rank defined using a tolerance
    max(size(A))*eps(norm(A)) =
    calculated singular value # 35462.766e-013
    gap in the singular values at the numerical rank:
    singular value # 3545 / singular value # 3546
    calculated condition number1.3279e+016
    # of blocks from dmperm1
    # strongly connected comp.1
    entries not in dmperm blocks0
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    Cholesky candidate?no
    positive definite?no

    authorM. Franz
    editorJ.-G. Dumas
    kindcombinatorial problem
    2D/3D problem?no


    Cohomology of various rings, from Matthias Franz, Univ. Konstanz, Germany
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,             
    Filename in JGD collection: Franz/19588x4164                             

    Ordering statistics:AMD METIS
    nnz(V) for QR, upper bound nnz(L) for LU49,806,687 27,825,311
    nnz(R) for QR, upper bound nnz(U) for LU5,148,759 3,700,300

    Maintained by Leslie Foster, last updated 24-Apr-2009.

    Entries 5 through 14 in the table of matrix properties and the singular
    value plot were created using SJsingular code. The other plots
    and statistics are produced using utilities from the SuiteSparse package.
    Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.