• SJSU Singular Matrix Database
  • Matrix group: JGD_GL6
  • Click here for a description of the JGD_GL6 group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups


  • Matrix: JGD_GL6/GL6_D_10
  • Description: Differentials of the Voronoi complex of perfect forms of rank 6 mod GL_6(Z),
  • download as a MATLAB mat-file, file size: 7 KB. Use SJget(589) or SJget('JGD_GL6/GL6_D_10') in MATLAB.
  • download in Matrix Market format, file size: 7 KB.
  • download in Rutherford/Boeing format, file size: 6 KB.

    JGD_GL6/GL6_D_10

    Routine svd from Matlab 7.6.0.324 (R2008a) used to calculate the singular values.

    JGD_GL6/GL6_D_10

    dmperm of JGD_GL6/GL6_D_10

    scc of JGD_GL6/GL6_D_10

    Matrix properties (click for a legend)  
    number of rows163
    number of columns341
    structural full rank?no
    structural rank158
    numerical rank 120
    dimension of the numerical null space221
    numerical rank / min(size(A))0.7362
    Euclidean norm of A 10.972
    calculated singular value # 1201.1314
    numerical rank defined using a tolerance
    max(size(A))*eps(norm(A)) =
    6.0574e-013
    calculated singular value # 1215.3334e-015
    gap in the singular values at the numerical rank:
    singular value # 120 / singular value # 121
    2.1213e+014
    calculated condition number3.5938e+017
    condest-2
    nonzeros2,053
    # of blocks from dmperm2
    # strongly connected comp.5
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typeinteger
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorP. Elbaz-Vincent
    editorJ.-G. Dumas
    date2008
    kindcombinatorial problem
    2D/3D problem?no
    SJid589
    UFid1,982

    Notes:

    Differentials of the Voronoi complex of perfect forms of rank 6 mod GL_6(Z),
    from Philippe Elbaz-Vincent, Institut Fourier, Grenoble, France.            
                                                                                
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,                
    http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html                   
                                                                                
    http://www-fourier.ujf-grenoble.fr/-Informations-personnelles-.html?P=pev   
                                                                                
    D_6  Smith Invariants = [ 1:156 ]                                           
    D_7  Smith Invariants = [ 1:307 2:3 60:2 ]                                  
    D_8  Smith Invariants = [ 1:320 2:1 6:2 12:1 ]                              
    D_9  Smith Invariants = [ 1:217 2:3 ]                                       
    D_10 Smith Invariants = [ 1:120 ]                                           
                                                                                
    Filename in JGD collection: GL6/D_10.sms                                    
    

    Ordering statistics:AMD METIS
    nnz(V) for QR, upper bound nnz(L) for LU24,380 27,506
    nnz(R) for QR, upper bound nnz(U) for LU8,939 9,363

    Maintained by Leslie Foster, last updated 24-Apr-2009.

    Entries 5 through 14 in the table of matrix properties and the singular
    value plot were created using SJsingular code. The other plots
    and statistics are produced using utilities from the SuiteSparse package.
    Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.