• SJSU Singular Matrix Database
  • Matrix group: JGD_SL6
  • Click here for a description of the JGD_SL6 group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups


  • Matrix: JGD_SL6/D_11
  • Description: Differentials of the Voronoi complex of perfect forms
  • download as a MATLAB mat-file, file size: 9 KB. Use SJget(593) or SJget('JGD_SL6/D_11') in MATLAB.
  • download in Matrix Market format, file size: 10 KB.
  • download in Rutherford/Boeing format, file size: 7 KB.

    JGD_SL6/D_11

    Routine svd from Matlab 7.6.0.324 (R2008a) used to calculate the singular values.

    JGD_SL6/D_11

    dmperm of JGD_SL6/D_11

    scc of JGD_SL6/D_11

    Matrix properties (click for a legend)  
    number of rows169
    number of columns461
    structural full rank?no
    structural rank168
    numerical rank 136
    dimension of the numerical null space325
    numerical rank / min(size(A))0.80473
    Euclidean norm of A 10.019
    calculated singular value # 1360.82348
    numerical rank defined using a tolerance
    max(size(A))*eps(norm(A)) =
    8.189e-013
    calculated singular value # 1376.9543e-015
    gap in the singular values at the numerical rank:
    singular value # 136 / singular value # 137
    1.1841e+014
    calculated condition number1.2816e+018
    condest-2
    nonzeros2,952
    # of blocks from dmperm3
    # strongly connected comp.6
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typeinteger
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorP. Elbaz-Vincent
    editorJ.-G. Dumas
    date2008
    kindcombinatorial problem
    2D/3D problem?no
    SJid593
    UFid2,193

    Notes:

    Differentials of the Voronoi complex of perfect forms                    
    from Philippe Elbaz-Vincent, Institut Fourier, Grenoble, France.         
                                                                             
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,             
    http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html                
                                                                             
    http://www-fourier.ujf-grenoble.fr/-Informations-personnelles-.html?P=pev
                                                                             
    D_5  Smith Invariants = [ 1:92 3:2 18:1 ]                                
    D_6  Smith Invariants = [ 1:338 2:1 ]                                    
    D_7  Smith Invariants = [ 1:621 2:5 6:1 60:2 ]                           
    D_8  Smith Invariants = [ 1:637 3:3 12:1 ]                               
    D_9  Smith Invariants = [ 1:491 ]                                        
    D_10 Smith Invariants = [ 1:318 2:3 4:2 ]                                
    D_11 Smith Invariants = [ 1:129 2:6 6:1 ]                                
                                                                             
    Filename in JGD collection: SL6/D_11.sms                                 
    

    Ordering statistics:AMD METIS
    nnz(V) for QR, upper bound nnz(L) for LU39,547 40,679
    nnz(R) for QR, upper bound nnz(U) for LU9,582 10,255

    Maintained by Leslie Foster, last updated 24-Apr-2009.

    Entries 5 through 14 in the table of matrix properties and the singular
    value plot were created using SJsingular code. The other plots
    and statistics are produced using utilities from the SuiteSparse package.
    Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.