• SJSU Singular Matrix Database
  • Matrix group: MathWorks
  • Click here for a description of the MathWorks group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups


  • Matrix: MathWorks/Kaufhold
  • Description: John Kaufhold, GE. Triggers bug in LU in MATLAB 6.5 on Windows (not Linux)
  • download as a MATLAB mat-file, file size: 337 KB. Use SJget(340) or SJget('MathWorks/Kaufhold') in MATLAB.
  • download in Matrix Market format, file size: 442 KB.
  • download in Rutherford/Boeing format, file size: 422 KB.

    MathWorks/Kaufhold

    Routine svd from Matlab 7.6.0.324 (R2008a) used to calculate the singular values.

    MathWorks/Kaufhold

    dmperm of MathWorks/Kaufhold

    Matrix properties (click for a legend)  
    number of rows8,765
    number of columns8,765
    structural full rank?yes
    structural rank8,765
    numerical rank 8,759
    dimension of the numerical null space6
    numerical rank / min(size(A))0.99932
    Euclidean norm of A 1e+015
    calculated singular value # 87591794.1
    numerical rank defined using a tolerance
    max(size(A))*eps(norm(A)) =
    1095.6
    calculated singular value # 8760780.86
    gap in the singular values at the numerical rank:
    singular value # 8759 / singular value # 8760
    2.2976
    calculated condition number8.8169e+014
    condest6.1465e+014
    nonzeros42,471
    # of blocks from dmperm256
    # strongly connected comp.256
    entries not in dmperm blocks93
    explicit zero entries0
    nonzero pattern symmetrysymmetric
    numeric value symmetry 78%
    typereal
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorKaufhold
    editorT. Davis
    date2006
    kindcounter-example problem
    2D/3D problem?no
    SJid340
    UFid1,404

    Ordering statistics:AMD METIS DMPERM+
    nnz(chol(P*(A+A'+s*I)*P'))46,565 53,374 46,503
    Cholesky flop count4.4e+005 6.4e+005 4.4e+005
    nnz(L+U), no partial pivoting84,365 97,983 84,334
    nnz(V) for QR, upper bound nnz(L) for LU99,409 109,763 100,921
    nnz(R) for QR, upper bound nnz(U) for LU204,810 222,104 199,377

    Maintained by Leslie Foster, last updated 24-Apr-2009.

    Entries 5 through 14 in the table of matrix properties and the singular
    value plot were created using SJsingular code. The other plots
    and statistics are produced using utilities from the SuiteSparse package.
    Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.