Routine svd from Matlab 7.6.0.324 (R2008a) used to calculate the singular values.
Matrix properties (click for a legend) | |
number of rows | 555 |
number of columns | 350 |
structural full rank? | no |
structural rank | 220 |
numerical rank | 171 |
dimension of the numerical null space | 179 |
numerical rank / min(size(A)) | 0.48857 |
Euclidean norm of A | 10.295 |
calculated singular value # 171 | 0.033323 |
numerical rank defined using a tolerance max(size(A))*eps(norm(A)) = | 9.8588e-013 |
calculated singular value # 172 | 3.3865e-015 |
gap in the singular values at the numerical rank: singular value # 171 / singular value # 172 | 9.8399e+012 |
calculated condition number | 4.794e+047 |
condest | -2 |
nonzeros | 4,357 |
# of blocks from dmperm | 13 |
# strongly connected comp. | 110 |
explicit zero entries | 0 |
nonzero pattern symmetry | 0% |
numeric value symmetry | 0% |
type | real |
structure | rectangular |
Cholesky candidate? | no |
positive definite? | no |
author | D. Maragal |
editor | T. Davis |
date | 2008 |
kind | least squares problem |
2D/3D problem? | no |
SJid | 523 |
UFid | 1,885 |
Additional fields | size and type |
b | full 555-by-1 |
Notes:
rank deficient (rank(A) < sprank(A) < size(A,2)) rank: 171 sprank: 220 columns: 350
Ordering statistics: | AMD | METIS |
nnz(V) for QR, upper bound nnz(L) for LU | 30,077 | 15,139 |
nnz(R) for QR, upper bound nnz(U) for LU | 10,270 | 9,703 |
Maintained by Leslie Foster, last updated 24-Apr-2009.
Entries 5 through 14 in the table of matrix properties and the singular
value plot were created using SJsingular code. The other plots
and statistics are produced using utilities from
the SuiteSparse package.
Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.