• SJSU Singular Matrix Database
  • Matrix group: NYPA
  • Click here for a description of the NYPA group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups


  • Matrix: NYPA/Maragal_5
  • Description: Rank deficient least squares problem, D. Maragal, NY Power Authority
  • download as a MATLAB mat-file, file size: 399 KB. Use SJget(526) or SJget('NYPA/Maragal_5') in MATLAB.
  • download in Matrix Market format, file size: 600 KB.
  • download in Rutherford/Boeing format, file size: 517 KB.

    NYPA/Maragal_5

    Routine svd from Matlab 7.6.0.324 (R2008a) used to calculate the singular values.

    NYPA/Maragal_5

    dmperm of NYPA/Maragal_5

    scc of NYPA/Maragal_5

    Matrix properties (click for a legend)  
    number of rows4,654
    number of columns3,320
    structural full rank?no
    structural rank2,690
    numerical rank 2,147
    dimension of the numerical null space1,173
    numerical rank / min(size(A))0.64669
    Euclidean norm of A 16.369
    calculated singular value # 21470.0001378
    numerical rank defined using a tolerance
    max(size(A))*eps(norm(A)) =
    1.6534e-011
    calculated singular value # 21481.1613e-014
    gap in the singular values at the numerical rank:
    singular value # 2147 / singular value # 2148
    1.1866e+010
    calculated condition number1.4882e+046
    condest-2
    nonzeros93,091
    # of blocks from dmperm163
    # strongly connected comp.25
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    typereal
    structurerectangular
    Cholesky candidate?no
    positive definite?no

    authorD. Maragal
    editorT. Davis
    date2008
    kindleast squares problem
    2D/3D problem?no
    SJid526
    UFid1,888

    Additional fieldssize and type
    bfull 4654-by-1

    Notes:

    rank deficient (rank(A) < sprank(A) < size(A,2))
    rank: 2147 sprank: 2690 columns: 3320           
    

    Ordering statistics:AMD METIS
    nnz(V) for QR, upper bound nnz(L) for LU3,347,442 1,859,302
    nnz(R) for QR, upper bound nnz(U) for LU2,883,495 2,997,975

    Maintained by Leslie Foster, last updated 24-Apr-2009.

    Entries 5 through 14 in the table of matrix properties and the singular
    value plot were created using SJsingular code. The other plots
    and statistics are produced using utilities from the SuiteSparse package.
    Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.