• SJSU Singular Matrix Database
  • Matrix group: Pajek
  • Click here for a description of the Pajek group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups

  • Matrix: Pajek/GD06_Java
  • Description: Pajek network: Graph Drawing contest 2006
  • download as a MATLAB mat-file, file size: 50 KB. Use SJget(18) or SJget('Pajek/GD06_Java') in MATLAB.
  • download in Matrix Market format, file size: 30 KB.
  • download in Rutherford/Boeing format, file size: 26 KB.


    Routine svd from Matlab (R2008a) used to calculate the singular values.


    scc of Pajek/GD06_Java

    Matrix properties (click for a legend)  
    number of rows1,538
    number of columns1,538
    structural full rank?no
    structural rank759
    numerical rank 744
    dimension of the numerical null space794
    numerical rank / min(size(A))0.48375
    Euclidean norm of A 36.501
    calculated singular value # 7440.083818
    numerical rank defined using a tolerance
    max(size(A))*eps(norm(A)) =
    calculated singular value # 7451.1171e-014
    gap in the singular values at the numerical rank:
    singular value # 744 / singular value # 745
    calculated condition numberInf
    # of blocks from dmperm204
    # strongly connected comp.1,028
    explicit zero entries0
    nonzero pattern symmetry 5%
    numeric value symmetry 5%
    Cholesky candidate?no
    positive definite?no

    authorGraph Drawing Contest
    editorV. Batagelj
    kinddirected graph
    2D/3D problem?no

    Additional fieldssize and type
    nodenamefull 1538-by-80


    Pajek network converted to sparse adjacency matrix for inclusion in UF sparse 
    matrix collection, Tim Davis.  For Pajek datasets, See V. Batagelj & A. Mrvar,
     GD 2006 contest graph C: Java Dependency graph                               
     graph in Pajek format                                                        
     transformed by Vladimir Batagelj, July 10, 2006                              

    Ordering statistics:AMD METIS
    nnz(chol(P*(A+A'+s*I)*P'))25,548 27,336
    Cholesky flop count1.6e+006 1.6e+006
    nnz(L+U), no partial pivoting49,558 53,134
    nnz(V) for QR, upper bound nnz(L) for LU87,769 57,630
    nnz(R) for QR, upper bound nnz(U) for LU34,683 36,033

    Maintained by Leslie Foster, last updated 24-Apr-2009.

    Entries 5 through 14 in the table of matrix properties and the singular
    value plot were created using SJsingular code. The other plots
    and statistics are produced using utilities from the SuiteSparse package.
    Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.