• SJSU Singular Matrix Database
  • Matrix group: Pajek
  • Click here for a description of the Pajek group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups

  • Matrix: Pajek/Zewail
  • Description: Pajek network: Zewail citation network
  • download as a MATLAB mat-file, file size: 211 KB. Use SJget(304) or SJget('Pajek/Zewail') in MATLAB.
  • download in Matrix Market format, file size: 210 KB.
  • download in Rutherford/Boeing format, file size: 144 KB.


    Routine svd from Matlab (R2008a) used to calculate the singular values.


    scc of Pajek/Zewail

    Matrix properties (click for a legend)  
    number of rows6,752
    number of columns6,752
    structural full rank?no
    structural rank4,325
    numerical rank 4,301
    dimension of the numerical null space2,451
    numerical rank / min(size(A))0.637
    Euclidean norm of A 33.891
    calculated singular value # 43010.010754
    numerical rank defined using a tolerance
    max(size(A))*eps(norm(A)) =
    calculated singular value # 43023.9322e-014
    gap in the singular values at the numerical rank:
    singular value # 4301 / singular value # 4302
    calculated condition numberInf
    # of blocks from dmperm990
    # strongly connected comp.6,706
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    Cholesky candidate?no
    positive definite?no

    authorE. Garfield
    editorV. Batagelj
    kinddirected multigraph
    2D/3D problem?no

    Additional fieldssize and type
    pubyearfull 6752-by-1
    gcsfull 6752-by-1
    nodenamefull 6752-by-28


    Pajek network converted to sparse adjacency matrix for inclusion in UF sparse 
    matrix collection, Tim Davis.  For Pajek datasets, See V. Batagelj & A. Mrvar,
     Articles citing and by AH Zewail, 1970-2002, Wed Jul 31 15:46:38 2002        

    Ordering statistics:AMD METIS
    nnz(chol(P*(A+A'+s*I)*P'))1,374,535 1,143,983
    Cholesky flop count1.2e+009 6.7e+008
    nnz(L+U), no partial pivoting2,742,318 2,281,214
    nnz(V) for QR, upper bound nnz(L) for LU231,321 306,347
    nnz(R) for QR, upper bound nnz(U) for LU5,466,622 4,489,878

    Maintained by Leslie Foster, last updated 24-Apr-2009.

    Entries 5 through 14 in the table of matrix properties and the singular
    value plot were created using SJsingular code. The other plots
    and statistics are produced using utilities from the SuiteSparse package.
    Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.