• SJSU Singular Matrix Database
  • Matrix group: Shyy
  • Click here for a description of the Shyy group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups


  • Matrix: Shyy/shyy41
  • Description: Wei Shyy, Univ. Florida. CFD/Navier-Stokes,viscous flow, fully coupled
  • download as a MATLAB mat-file, file size: 176 KB. Use SJget(217) or SJget('Shyy/shyy41') in MATLAB.
  • download in Matrix Market format, file size: 135 KB.
  • download in Rutherford/Boeing format, file size: 123 KB.

    Shyy/shyy41

    Routine svd from Matlab 7.6.0.324 (R2008a) used to calculate the singular values.

    Shyy/shyy41

    dmperm of Shyy/shyy41

    scc of Shyy/shyy41

    Matrix properties (click for a legend)  
    number of rows4,720
    number of columns4,720
    structural full rank?yes
    structural rank4,720
    numerical rank 4,712
    dimension of the numerical null space8
    numerical rank / min(size(A))0.99831
    Euclidean norm of A 188.7
    calculated singular value # 47123.1668e-009
    numerical rank defined using a tolerance
    max(size(A))*eps(norm(A)) =
    1.3415e-010
    calculated singular value # 47132.419e-013
    gap in the singular values at the numerical rank:
    singular value # 4712 / singular value # 4713
    13092
    calculated condition number4.2208e+020
    condest3.5135e+048
    nonzeros20,042
    # of blocks from dmperm1,641
    # strongly connected comp.81
    entries not in dmperm blocks4,641
    explicit zero entries0
    nonzero pattern symmetry 72%
    numeric value symmetry 18%
    typereal
    structureunsymmetric
    Cholesky candidate?no
    positive definite?no

    authorW. Shyy
    editorT. Davis
    date1994
    kindcomputational fluid dynamics problem
    2D/3D problem?yes
    SJid217
    UFid810

    Ordering statistics:AMD METIS DMPERM+
    nnz(chol(P*(A+A'+s*I)*P'))82,741 88,525 42,144
    Cholesky flop count2.9e+006 3.4e+006 1.6e+006
    nnz(L+U), no partial pivoting160,762 172,330 84,209
    nnz(V) for QR, upper bound nnz(L) for LU97,599 105,430 60,030
    nnz(R) for QR, upper bound nnz(U) for LU184,109 190,055 106,590

    Maintained by Leslie Foster, last updated 24-Apr-2009.

    Entries 5 through 14 in the table of matrix properties and the singular
    value plot were created using SJsingular code. The other plots
    and statistics are produced using utilities from the SuiteSparse package.
    Matrix color plot pictures by cspy, a MATLAB function in the CSparse package.