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Existing routines, such as xGELSY or xGELSD in LAPACK, for solving rank-deficient least
squares problems require O(mn2) operations to solve min ‖b−Ax‖ where A is an m by n matrix.
We present a modification of the LAPACK routine xGELSY that requires O(mnk) operations
where k is the effective numerical rank of the matrix A. For low rank matrices the modification
is an order of magnitude faster than the LAPACK code.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-
tion—Fortran 77; G.1.3 [Numerical Analysis]: Numerical Linear Algebra; G.4 [Mathematics
of Computing]: Mathematical Software
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1. INTRODUCTION

The solution of the least squares problems

min
x
‖b−Ax‖ (1)

where A is an m×n rank-deficient or nearly rank-deficient matrix and ‖ ‖ indicates
the two-norm is important in many applications. For example such ill-posed prob-
lems arise in the form of inverse problems in areas of science and engineering such
as acoustics, astrometry, tomography, electromagnetic scattering, geophysics, he-
lioseismology, image restoration, remote sensing, inverse scattering, and the study
of atmospheres [Hansen 1998; Enting 2002]. LAPACK [Anderson et al. 1999] is
the most widely used computational tool to solve (1) and LAPACK has two rec-
ommended routines for solving (1). The routine xGELSD is based on the singular
value decomposition (SVD) and the routine xGELSY is based on a complete orthog-
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onal decomposition calculated using the QR factorization with column interchanges.
Both of these routines require O(mn2) floating point operations (flops). We present
a modification, which we call xGELSZ, of xGELSY that requires O(mnk) flops
where k is the effective numerical rank. For low rank problems the new routine is
an order of magnitude faster than xGELSY or xGELSD and for high rank problems
the routine xGELSZ requires essentially the same time as xGELSY and less time
than xGELSD. This paper presents an implementation of an algorithm similar to
an algorithm discussed in [Foster 2003].

The article is structured as follows. In Section 2 we discuss some of the theory
behind our algorithm. In Section 3 we describe the usage of xGELSZ and its
associated routines. Section 4 presents some results comparing xGELSZ, xGELSY
and xGELSD.

2. TRUNCATED QR FACTORIZATIONS

The routine xGELSY in LAPACK is based on the QR factorization with column
interchanges

A = QRPT = Q

(
R11 R12

0 R22

)
PT . (2)

In these equations Q is an m by m orthogonal matrix (we assume for the moment
that A is real and that m ≥ n), P is a n by n permutation matrix chosen by standard
column interchanges [Businger and Golub 1965], R11 is a k × k upper triangular
nonsingular matrix, R12 is a k×(n−k) matrix, and R22 is an (m−k)×(n−k) matrix
which is upper triangular. In xGELSY the effective numerical rank k is chosen so
that R11 is the largest leading submatrix whose estimated condition number is less
than a user chosen tolerance. Following the computation of the decomposition (2)
the LAPACK algorithm truncates the QR factorization by considering R22 to be
negligible. The matrix R12 is annihilated by orthogonal transformations from the
right, arriving at the complete orthogonal factorization

A ∼= Q

(
T11 0
0 0

)
ZPT (3)

where Z is an orthogonal matrix and T11 is a k × k upper triangular nonsingular
matrix. LAPACK then calculates the minimum norm solution

x = PZT

(
T−1

11 QT
1 b

0

)
. (4)

where Q1 consists of the first k columns of Q.
The algorithm in xGELSZ is based on the simple observation that the calculated

solution x is unchanged if the matrix R is triangular or if R is simply block triangular
where R11 is triangular but R22 is not triangular. This follows since the matrix R22

is not used in the calculation of x in (4) and since Q1, T11 and PZT are unchanged
by a factorization of R22. In order to carry out the partial factorization of A after k
columns and rows of A have been factored so that R11 is k×k and R12 is k×n−k
xGELSZ does the following:

(1) A column is chosen among columns k + 1 to n using the criteria of [Businger
and Golub 1965] and pivoted to column k + 1.
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(2) A Householder transformation is constructed to zero out column k + 1 below
the diagonal and the transformations is applied to column k + 1.

(3) The condition estimator of [Bischof 1990] is applied to the next larger, k + 1×
k + 1, triangular matrix . If the estimated condition number is greater than
a user supplied tolerance the factorization is stopped and the effective rank
is set to k. Otherwise the Householder transformation is applied to form row
k + 1 of the partially factored matrix, k is increased by one and these steps are
repeated.

This requires applying k+1 Householder transformations to A: k to form the k×k
triangular matrix R11 and one additional transformation is needed to construct the
next larger triangular matrix. We should add that this extra transformation can
be discarded since it does not affect x as calculated by (4). The routine xGELSY,
on the other hand, factors A completely before applying the condition estimator of
[Bischof 1990] and uses n Householder transformations.

For m ≥ n if R is triangular, as in xGELSY, the flop count to calculate x for a
single right hand side b is approximately

2mn2 − 2n3/3 + 2nk2 − 2k3 (5)

whereas if R is block triangular as in xGELSZ the flop count of the algorithm is
approximately

4mnk − 2k2m− 2k3/3. (6)

The count in (6) is never larger that the count in (5) and it is much smaller for
k << n. In addition to reducing the work in the factorization the routine xGELSZ
uses only k Householder transformations in forming QT

1 b whereas xGELSY applies n
Householder transformations in forming QT

1 b. This leads to an additional significant
reduction in work in the case that (1) must be solved for many right hand sides
b. In the above discussion we have assumed, for simplicity, that m ≥ n. If m < n
there are similar saving in floating point operations.

The efficiency of an algorithm is influenced by the effective use of cache memory,
as well as the number of flops in the algorithm. To use cache memory efficiently
it is important that an algorithm uses level 3 (matrix-matrix) basic linear algebra
subroutines, BLAS, as much as possible. In both xGELSY and xGELSZ level 3
BLAS calculations are used to update, periodically, the matrix R22 using the block
representation of a sequence of Householder transformations [Golub and VanLoan
1996, p. 213]. Although the estimation of the condition numbers of the triangular
factors R11 is done at different locations in the two algorithms this does not affect
the level 3 BLAS calculations used to update R22 and, prior to the termination
of the factorization in xGELSZ, these level 3 BLAS calculations are identical in
xGELSZ and xGELSY. Therefore the performance gains due to the use of level 3
BLAS are similar and in both algorithms approximately half of the floating point
operations in the factorizations are done using level 3 BLAS routines.

There is no loss of accuracy in using xGELSZ in comparison with xGELSY.
Mathematically (in exact arithmetic) they produce the same solution x. Compu-
tationally, in inexact floating point calculations, the two algorithms are different in
the location of the calculations for terminating the factorization but the calcula-
tions that affect the computed matrix R11 and the calculated numerical rank k are
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identical. If the same precision is used throughout the computations the calculated
numerical ranks and the calculated matrices R11 will be identical. The order of
the remaining calculations to determine x may be different in the two algorithms
since the orderings of the columns of R12 may be different. Therefore the computed
solutions x, although typically quite close, are usually not identical. However for
the calculation of x there is no reason that the ordering of the columns in R12 in
one algorithm is better than the ordering in the other and the accuracy of the two
algorithms will be very similar.

It is also of interest to compare the accuracy of xGELSZ with xGELSD. A useful
comparison is made in [Foster 2003]. Let xQR be the solution calculated by the
algorithm used in [Foster 2003] and xSV D be the solution calculated by xGELSD.
In [Foster 2003], if x0 solves Ax0 = b0 for an ill-conditioned matrix A and if Ax =
b = b0 + δb is solved then xQR and xSV D are compared by comparing ‖xQR − x0‖
with ‖xSV D − x0‖. One conclusion from [Foster 2003] is that if the numerical rank
is chosen at a sufficiently large gap in the singular value spectrum and if the QR
factorization is rank-revealing then approximately half the time the solutions xQR

are closer to the desired solution x0 than are the singular value decomposition
(SVD) solutions xSV D. Conversely, the SVD solutions will be closer approximately
half the time and in this case overall the two algorithms are very similar in accuracy.
The algorithm used in [Foster 2003] is slightly different, as described below, than
the algorithm used in xGELSZ. However the analysis of [Foster 2003] applies to
xGELSZ and the above conclusions are true if xQR represents the result calculated
by xGELSZ.

Some of the ideas used in the xGELSZ algorithm have been discussed earlier
in the literature. The algorithm used by LAPACK in xGELSY is discussed in
[Quintana-Orti et al. 1998]. The code for xGELSZ is a modificiation of the xGELSY
code. For low rank problems it is well known [Golub and VanLoan 1996, p. 250]
that truncating the QR factorization reduces the flop count in the factorization
to approximately 4mnk for small k. Stewart [Stewart 1998, p. 385] also notes
that for small k the savings in stopping the reduction early are substantial. As
mentioned earlier this paper presents an implementation of an algorithm similar to
an algorithm in [Foster 2003]. The primary difference is that xGELSZ checks for
termination after each column of A is factored and the algorithm of [Foster 2003]
tests for termination after nb columns are factored where nb is the block size used
by LAPACK (a typical value of nb is 32). For very low rank problems xGELSZ will
be more efficient than the code discussed in [Foster 2003]. We should also note that
[Bischof and Quintana-Orti 1998] and [Eisenstat and Gu 1996] discuss algorithms
which construct QR factorizations and can be used to solve (1). The code provided
in [Bischof and Quintana-Orti 1998] does not truncate the QR factorization early
and is slower than xGELSZ for low-rank problems. The paper [Eisenstat and
Gu 1996] does discuss truncating the factorization early. However as reported in
[Eisenstat and Gu 1996] their strong rank-revealing QR (SRRQR) algorithm is
approximately 50% slower than the LAPACK 2.0 routine xGEQPF. Our code is
faster than xGEQPF.
ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.
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3. USE OF XGELSZ AND ASSOCIATED ROUTINES

Each of the routines in the package comes in four precisions – single, double, com-
plex and complex double. Following the LAPACK convention this is indicated by
the first letter, S, D, C or Z, respectively, of the associated routine. We use xGELSZ
to refer to any of these precisions.

The routine xGELSZ is the driver routine for computing the minimum norm so-
lution to the rank-deficient least squares problem (1). Its use and parameters are
identical to the use and parameters of xGELSY, as described in the LAPACK User’s
Guide [Anderson et al. 1999], except that the parameter specifying the workspace
size must be slightly larger. The routine xGELSZ needs adequate workspace to
simultaneously factor the matrix and to estimate the condition number of the
triangular matrices R11 whereas xGELSY finishes the factorization prior to es-
timating the condition numbers and can use the same workspace for both por-
tions of the computation. For this reason for most problems the recommended
workspace for xGELSZ is 2 min(m,n) greater than the recommended workspace
of min(m,n) + 2 ∗ n + nb(n + 1) for xGELSY. Here nb is the block size used by
LAPACK. The documentation for xGELSZ contains additional details.

The routine xGELSZ uses existing LAPACK routines and three new auxiliary
routines xLAQP3, xLAQPP and xLAQPQ. The routine xLAQP3 compute the par-
tial QR factorization of the matrix A, calculating P , Q, R11, and R12 in (2). The
matrix Q is represented as the product of k Householder transformations that are
stored in the matrix A.

The routine xLAQP3 uses either xLAQPP, which uses level 3 BLAS, or xLAQPQ,
which uses level 2 (matrix-vector) BLAS, for the factorization of A. The choice of
whether to use level 2 BLAS routines or level 3 BLAS routines and the choice
of the block size depends on the matrix size and memory available, following the
guidelines incorporated in the LAPACK routine ILAENV. The routines xLAQPP
and xLAQPQ use a partial QR factorization with column pivoting applied to a
portion of A. Additional detailed documentation of the new auxiliary routines and
the routine xGELSZ is contained in the documentation that comes with the code
in the xGELSZ package.

4. COMPARISON OF XGELSD, XGELSY AND XGELSZ

We carried out timing studies of xGELSD, xGELSY and xGELSZ on three different
platforms: a 2.6 GHertz Intel computer running Windows XP, a 1.5 GHertz Intel
computer running Redhat Linux, and a SUN Computer running SUN-OS 5.8. We
generated matrices of different effective ranks using LAPACK’s routine xQRT15,
modified slightly to allow the effective rank to be set to any user specified value.
The routine xQRT15 is used by LAPACK to generate matrices for its timing and
accuracy tests. In Figure 1 we summarize runs using our variation of DQRT15
to generate 1600 by 1600 matrices of various ranks. For each run we used BLAS
routines supplied by the computer vendor. We also ran the three programs for
smaller 100 by 100 matrices and our results are pictured in Figure 2.

For these 100 by 100 matrices there is a jump in the time for DGELSY or
DGELSZ for the computers running Windows or SUN-OS, near a numerical rank
of 32. For smaller matrices such as these 100 by 100 matrices it is generally faster
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Fig. 1. Timings for DGELSZ, DGELSY and DGELSD for 1600 by 1600 matrices with a variety
of numerical ranks on three computers.
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Fig. 2. Timings for DGELSZ, DGELSY and DGELSD for 100 by 100 matrices with a variety of
numerical ranks on three computers.

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.



An Efficient Algorithm for Solving Rank-Deficient Least Squares Problems · 117

to use an unblocked, level 2 BLAS based routines rather than blocked, level 3
BLAS based routines and most LAPACK routines used by DGELSY and DGELSZ
use unblocked code for matrix sizes less than a crossover point of 128. However
the LAPACK routines DORMQR and DORMRZ, which are called by DGELSZ
and DGELSY, use blocked code when the numerical rank is greater than 32. For
DGELSZ and DGELSY this choice is not optimal for smaller matrices on these
computers. We did not modify the LAPACK routines DORMQR or DORMRZ.

The advantage of DGELSZ is similar for 100 by 100 matrices and for the larger
1600 by 1600 matrices. For high rank problems DGELSZ is approximately two to
six times faster than DGELSD and DGELSZ requires essentially the same time as
DGELSY. Here we use the term “essentially the same time” to indicate that in our
testing for a variety of high rank matrices with dimensions between 100 by 100 and
1600 by 1600 that the average differences in times have been less than a few percent
on all the platforms and precisions discussed and less than a fraction of a percent
for larger matrices. For low rank problems DGELSZ is much faster than DGELSY
or DGELSD. For example on the computer running Windows for the 1600 by 1600
matrices and for numerical ranks of 5, 100 and 300 DGELSZ is at least 60, 5 and
2, respectively, times faster than DGELSY and at least 125, 10 and 4 times faster
than DGELSD. The results are similar for each of the three computers.

In addition to these timing tests we have done other tests. For example we
have timed runs for single precision, complex and double precision complex on all
three computers and we have timed runs using classes of matrices other than those
generated by xQRT15. The results are consistent with the results presented above.

To check that xGELSZ correctly solves (1) we used the LAPACK test rou-
tines xCHKAA and xDDRVLS, modified to include tests of xGELSZ. The routines
xCHKAA and xDDRVLS are used by LAPACK to verify that the existing least
squares solvers xGELSY and xGELSD are correct. The test routines calculate a
variety of ratios for a set of test matrices generated by LAPACK. The ratios should
not be large, LAPACK uses a limit of 30, if the the code is correctly solving (1).
In each of the four precisions and on each of the three computers discussed earlier
xGELSZ passed the LAPACK test suite.

Related tests support our earlier comments that the accuracy of xGELSZ will be
very similar to that of xGELSY. In Figure 3 for a sample of 5000 random 250 by
300 matrices generated by our modification of DQRT15 on the computer running
Windows XP we have plotted histograms of four of the test ratios used in the
LAPACK testing routines. The sample includes 200 matrices for each rank that is
a multiple of 10 from 10 and 250. The labels on the plots describe each ratio where
ε is relative machine precision, k is the effective numerical rank of A, s1:k indicates
a vector of the first k singular values as specified in DQRT15 of A, svals(T11) is
a vector of the singular values of T11 and r = b − Ax. The vector b is chosen to
be in the range space of A. The ratio in the lower right hand plot is defined in
LAPACK’s routine DQRT17 which calculates this ratio.

The horizontal axis in each plot is large enough to include the largest value over
the 5000 samples of each ratio for DGELSZ. For least squares problems LAPACK
accepts the accuracy of a routine if all the above ratios are less than 30 and in these
calculations all the ratios for DGELSZ, as well as for DGELSY and DGELSD, were
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Fig. 3. Histograms for 5000 random 250 by 300 matrices of four ratios used in the LAPACK test
routines.

well under this limit. Also note that the histograms for DGELSY and DGELSZ
are almost identical which indicates that the accuracies of the two routines are very
similar. Similar conclusions were obtained for other platforms and precisions.
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