Householder idea 2: reflection to zero out all but the first component of a given vector z

Given any vector z we will construct a Householder transformation U so that $\tilde{z} = Uz$ has all the components of \tilde{z} equal to zero, except for the first component of \tilde{z}. We do this by constructing the "mirror" (plane in \mathbb{R}^3) such that the reflection of z through Π lies along the $-e_1$ axis, where e_1 is the vector that is all zero except that the first component is 1.

Construction:

- Let $\sigma = \text{sign}(z_1)||z||$, where, if $z_1 \geq 0$, then $\text{sign}(z_1) = 1$ and, if $z_1 < 0$, then $\text{sign}(z_1) = -1$.
- Let $\hat{v} = z + \sigma e_1$ and $u = \hat{v} / ||\hat{v}||$
- Let Π be the plane perpendicular to u (and therefore $U = (I - 2uu^T)$).

Here is a picture

![Diagram of Householder transformation]

To show that the image of z lies along the negative e_1 axis, we need to show that angle d, that is the angle of "incidence" equals the angle of "reflection." We can do this as follows:

1. $\angle b = \angle a$. Proof:
 Consider parallelogram 1234 with sides v and σe_1 and diagonal $z + \sigma e_1$. This is a rhombus since we choose σ so that $||z|| = ||\sigma e_1||$. Therefore, by the geometry of a rhombus $\angle b = \angle a$.

2. $\angle b + \angle c = 90^\circ$ follows since u is perpendicular to Π.

3. $\angle a + \angle b + \angle c + \angle d = 180^\circ$ since the angle between $-\sigma e_1$ and σe_1 is 180°.

4. $\angle a + \angle d = 90^\circ$, subtracting 2 from 3.

5. So $\angle d = 90^\circ - \angle a$ (by 4) and $\angle c = 90^\circ - \angle b$ (by 2). Since, by 1, $\angle b = \angle a$, it follows that $\angle c = \angle d$, as desired.