A bijection on core partitions

Brant C. Jones
brant@math.ucdavis.edu

Joint with Chris Berg and Monica Vazirani
University of California, Davis

April 22, 2009
My research relates to the study of symmetry, with applications to Chemistry, Physics, Differential Equations

In this talk we’ll describe some geometry associated to the symmetric group of permutations.
Symmetric Group

The symmetric group S_n is the set of all bijections

$$\sigma : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots n\}$$

with composition as the group operation.

For example, $\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{bmatrix}$ and $\tau = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end{bmatrix}$ are permutations in S_5 and if we compose them, we get

$$\tau \sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{bmatrix}.$$
Symmetric Group

The *symmetric group* S_n has a presentation with generators

$$s_1, s_2, \ldots, s_{n-1}$$

and relations

$$s_i^2 = id$$

$$s_is_j = s_js_i \quad \text{for } |i - j| \geq 2,$$

$$s_is_i+1s_i = s_{i+1}s_is_{i+1}$$

We think of each s_i as an *adjacent transposition*:

$$s_i = \begin{bmatrix} 1 & 2 & \cdots & i & i+1 & \cdots & n \\ 1 & 2 & \cdots & i+1 & i & \cdots & n \end{bmatrix}.$$
Symmetric Group

Groups with a similar presentation in terms of generators and relations are called Coxeter groups. They have generators s_1, s_2, \ldots, s_n with each $s_i^2 = id$, and

$$(s_is_j)^{m_{ij}} = id.$$

for some $m_{ij} \geq 2$. The relation $s_i^2 = id$ means that $s_i = s_i^{-1}$.

For example,

$id = (s_is_j)^2 = s_is_js_is_j$

is equivalent to

$s_js_i = s_is_j$

and

$id = (s_is_j)^3 = s_is_js_is_js_is_j$

is equivalent to

$s_js_is_j = s_is_js_i$
The relations in a Coxeter group are often visualized in a combinatorial graph.

- Vertices = generators.
- No edge $\iff (s_i s_j)^2 = id \iff s_i s_j = s_j s_i$.
- Unlabeled edge $\iff (s_i s_j)^3 = id \iff s_i s_j s_i = s_j s_i s_j$.
- Edge labeled by m $\iff (s_i s_j)^m = id \iff s_i s_j s_i \cdots = s_j s_i s_j \cdots$.

For example, S_n has the Coxeter graph

```
●s_1    ●s_2    ●s_3  ...  ●s_{n-2}    ●s_{n-1}
```
The relation $s_i^2 = id$ means that $s_i = s_i^{-1}$. We can view the generators s_i as reflections of a vector space.

Definition

Let $u \in \mathbb{R}^n$. A *reflection* through the hyperplane orthogonal to u is a linear map s_u sending

$$v \mapsto v - \frac{2 \langle u, v \rangle}{\langle u, u \rangle} u$$
Symmetric Group

For S_n, we can combine our two points of view if we take a vector space \mathbb{R}^n with orthonormal basis $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$.

E.g. let $n = 3$. Then define $\alpha_1 = \varepsilon_1 - \varepsilon_2$ and $\alpha_2 = \varepsilon_2 - \varepsilon_3$. Then,

$$s_{\alpha_1}(\varepsilon_1) = \varepsilon_1 - \frac{2\langle \varepsilon_1, \varepsilon_1 - \varepsilon_2 \rangle}{\langle \varepsilon_1 - \varepsilon_2, \varepsilon_1 - \varepsilon_2 \rangle}(\varepsilon_1 - \varepsilon_2) = \varepsilon_1 - (\varepsilon_1 - \varepsilon_2) = \varepsilon_2,$$

$$s_{\alpha_1}(\varepsilon_2) = \varepsilon_2 - \frac{2\langle \varepsilon_2, \varepsilon_1 - \varepsilon_2 \rangle}{\langle \varepsilon_1 - \varepsilon_2, \varepsilon_1 - \varepsilon_2 \rangle}(\varepsilon_1 - \varepsilon_2) = \varepsilon_2 + (\varepsilon_1 - \varepsilon_2) = \varepsilon_1.$$

SO,

$$s_{\alpha_1} = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \\ \varepsilon_2 & \varepsilon_1 & \varepsilon_3 \end{bmatrix},$$

$$s_{\alpha_2} = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \\ \varepsilon_1 & \varepsilon_3 & \varepsilon_2 \end{bmatrix}.$$
\[\alpha_1 + \alpha_2 = \varepsilon_1 - \varepsilon_3 \]
Symmetric Group

A *subgroup* of S_n is any subset of permutations that is closed under the composition operation.

One special way this can happen is by taking a *subset of the generators*, called a *parabolic subgroup*. For example, S_4 is a parabolic subgroup of S_5:

$$
\begin{array}{cccc}
\bullet s_1 & \bullet s_2 & \bullet s_3 & \bullet s_4 \\
\end{array}
$$

These are all the permutations in which the last entry 5 *is fixed*.

$$
S_4 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\
* & * & * & * & 5 \\
\end{bmatrix}
$$
If we wanted to use our understanding of S_4 to understand S_5, we could specify permutations in S_5 by

1. Permute the first four entries.
2. Move the entry 5 into its final position.

For example, we could build $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{bmatrix}$ as

$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix} \xrightarrow{s_1} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{bmatrix} \xrightarrow{s_3} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end{bmatrix} \xrightarrow{s_4} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{bmatrix} \xrightarrow{s_3} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{bmatrix}$
Affine Symmetric Group

The affine symmetric group \tilde{S}_n is presented as a Coxeter group by:

- Generators $s_0, s_1, \ldots, s_{n-1}$, with $s_i^2 = id$,
- Commuting relations $s_is_j = id$ if $|i - j| \geq 2$,
- Braid relations $s_is_{i+1}s_i = s_{i+1}s_is_{i+1}$ and $s_0s_{n-1}s_0 = s_{n-1}s_0s_{n-1}$.

This is an infinite Coxeter group, but notice that it has finite S_n as a parabolic subgroup.
We can again view the generators s_i as \textbf{reflections} of a vector space with orthonormal basis $\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}$. The formula for reflection by $s_1, s_2, \ldots, s_{n-1}$ is exactly the same as before:

- For $1 \leq i \leq n - 1$, let s_i be the reflection that interchanges ε_i and ε_{i+1}.

The reflection by s_0 is an \textbf{affine reflection} defined on $v = \sum_{j=1}^{n} a_j \varepsilon_j$ by

$$s_0(v) = (a_n + 1)\varepsilon_1 + a_2 \varepsilon_2 + \cdots + a_{n-1} \varepsilon_{n-1} + (a_1 - 1) \varepsilon_n.$$
\[\alpha_1 = \varepsilon_1 - \varepsilon_2 \]
\[\alpha_2 = \varepsilon_2 - \varepsilon_3 \]
Affine Symmetric Group

The simple roots Δ of type A_{n-1} are

$$\alpha_1 = \varepsilon_1 - \varepsilon_2, \quad \alpha_2 = \varepsilon_2 - \varepsilon_3, \quad \ldots, \quad \alpha_{n-1} = \varepsilon_{n-1} - \varepsilon_n.$$

The \mathbb{Z}-span Λ_R of Δ is called the root lattice of type A_{n-1}. Note that these are just vectors whose coordinates sum to 0.

Recall that S_n is a parabolic subgroup of \widetilde{S}_n. It turns out that there is a unique way to write any affine permutation as a pair

$$\left(\text{element of the root lattice}, \text{finite permutation} \right)$$

However, it’s better to look at all the affine permutations that correspond to a given root lattice point, and choose a special one to represent the root lattice point. This affine permutation called a minimal length coset representative.
Affine Symmetric Group

We want to study

minimal length coset representatives

↔ integer vectors whose coordinates sum to 0

↔ \(n \)-cores

↔ abacus diagrams

and especially, **how to project an \(n \)-core to an \((n - 1)\)-core?**

E.g.

\[
\begin{array}{c}
\bullet 0 \\
\bullet 1 \quad \bullet 2 \quad \bullet 3 \\
\end{array}
\begin{array}{c}
\longrightarrow
\\
\begin{array}{c}
\bullet 0 \\
\bullet 1 \quad \bullet 2 \\
\end{array}
\end{array}
\]
Core Notation

Let $\lambda = (\lambda_1 \geq \ldots \geq \lambda_r)$ be a partition and $n \geq 2$ be an integer.

Example

The n-residue of a box (i, j) is the least nonnegative integer $\equiv j - i \mod n$.
Core Notation

Let $\lambda = (\lambda_1 \geq \ldots \geq \lambda_r)$ be a partition and $n \geq 2$ be an integer.

Example

The n-residue of a box (i,j) is the least nonnegative integer $\equiv j - i \mod n$.
Core Notation

Let $\lambda = (\lambda_1 \geq \ldots \geq \lambda_r)$ be a partition and $n \geq 2$ be an integer.

Example

The hook length of a box (i, j) is the number of boxes to the right and below the box, including itself. It is denoted $h_{(i,j)}^{\lambda}$.
Core Notation

Let \(\lambda = (\lambda_1 \geq \ldots \geq \lambda_r) \) be a partition and \(n \geq 2 \) be an integer.

Example

<table>
<thead>
<tr>
<th>14</th>
<th>10</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The *hook length* of a box \((i, j)\) is the number of boxes to the right and below the box, including itself. It is denoted \(h_{(i,j)}^\lambda \).
Cores

Definition

A partition λ is an n-core if $n \nmid h_{(i,j)}^\lambda$ for every box (i,j) of λ.

Example

\[
\begin{array}{ccccccc}
14 & 10 & 7 & 6 & 5 & 3 & 2 & 1 \\
10 & 6 & 3 & 2 & 1 \\
6 & 2 \\
5 & 1 \\
3 \\
2 \\
1
\end{array}
\]

λ is a 4-core.
Question

Given an n-core, how can we project to obtain an $(n - 1)$-core?

Example

<table>
<thead>
<tr>
<th>4-core</th>
<th>3-core</th>
<th>2-core</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\rightarrow

5	2	1
2		
1		

\rightarrow

| 1 | | |
Cores

n-core partitions index:

- Schubert cells in the affine Grassmannian Gr of $SL(n, \mathbb{C})$.
 $(\text{Gr} \cong SL_n(\mathbb{C}((t))))/SL_n(\mathbb{C}[[t]]).$]
- k-Schur functions and dual k-Schur functions in $H_*(\text{Gr}) \cong \Lambda_n$ and $H^*(\text{Gr}) \cong \Lambda^n$, respectively.
- Blocks in the representation theory of the symmetric group S_k over a field of characteristic $n > 0$.
Cores

- $C_n = \text{The set of all } n\text{-cores}.$
- $C^k_n = \text{The subset of } C_n \text{ having first part } k.$
- $C^\leq_k n = \text{The subset of } C_{n-1} \text{ having first part } \leq k.$

We will define a bijection

$$\Phi^k_n : C^k_n \to C^\leq_k n_{n-1}$$

Then,

$$\sum_{k \geq 0} |C^k_n| x^k = \sum_{k \geq 0} \binom{k+n-2}{k} x^k = \frac{1}{(1-x)^{n-1}}.$$

(Proof:

$$\binom{k+n-2}{k} = \binom{k+n-3}{k} + \binom{k+n-4}{k-1} + \cdots + \binom{n-3}{0}.$$
The partition shape is determined by first column hooklengths. These can be generalized to β-numbers.
Beta numbers and Abaci

<table>
<thead>
<tr>
<th>Runner</th>
<th>Runner</th>
<th>Runner</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level -1 →</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>Level 0 →</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Level 1 →</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Level 2 →</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Level 3 →</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-core

```
... -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ...
... o o o o ● o o o ● o o ● o ● o ● o ● o ● o ● ...
```
The abacus for $\beta = (8, 5, 4, 2, 1, -1, -2, -3, \ldots)$ has balance number $2 = (-1) + 1 + 2$.
The abacus for $\beta = (8, 5, 4, 2, 1, -1, -2, -3, \ldots)$ has balance number 2. The abacus for $\beta = (9, 6, 5, 3, 2, 0, -1, -2, \ldots)$ has balance number $3 = 3 + (-1) + 1$.
Beta numbers and Abaci

Theorem

Theorem 2.7.16, Lemma 2.7.38 in James–Kerber

- λ is an n-core if and only if any (equivalently, every) abacus of λ on n runners is flush.

- Moreover, in the **balanced flush abacus** of an n-core λ, each active bead on runner i corresponds to a row of λ whose rightmost box has residue i.
Beta numbers and Abaci

<table>
<thead>
<tr>
<th>Level</th>
<th>Runner 0</th>
<th>Runner 1</th>
<th>Runner 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>-1</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

3-core

\[\begin{array}{cccc}
0 & 1 & 2 & 0 \\
2 & 0 & & \\
1 & 2 & & \\
0 & & & \\
2 & & & \\
\end{array}\]
The bijection Φ_n^k

<table>
<thead>
<tr>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

4-core (8, 5, 2^2, 1^3)

$\Phi_4^8 \rightarrow$

<table>
<thead>
<tr>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-core (2, 1^2).
The bijection Φ^k_n

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4-core $(8, 5, 2^2, 1^3)$ \[\Phi^8_4 \] 3-core $(2, 1^2)$.

Brant C. Jones (UC Davis)
A bijection on core partitions
April 22, 2009
33 / 43
The bijection Φ^n_k

Let $a = (a_1, \ldots, a_n) \in \Lambda_R$ written in the ε_i basis, so each $a_i \in \mathbb{Z}$ and $\sum_{i=1}^n a_i = 0$.

We form a balanced flush abacus from a by filling the $(i - 1)^{st}$ runner with beads from $-\infty$ down to level a_i.

This defines a bijection

$$\pi : \{(a_1, \ldots, a_n) : a_i \in \mathbb{Z}, \sum_{i=1}^n a_i = 0\} \rightarrow \{\text{balanced flush abaci}\} \rightarrow C_n.$$
The bijection Φ^k_n

Example

$n = 4$, $(2, 0, 0, -2)$ corresponds to

\[
\begin{array}{cccc}
-8 & -7 & -6 & -5 \\
-4 & -3 & -2 & -1 \\
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7 \\
8 & 9 & 10 & 11 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 & 0 \\
3 & 0 \\
2 \\
1 \\
0 \\
\end{array}
\]
The bijection Φ_n^k

Proposition

Suppose that $\pi(a) = \pi(a_1, \ldots, a_n) = \lambda$. Then we have

$$\lambda_1 = (a_i - 1)n + i$$

where a_i is the rightmost occurrence of the largest coordinate in a.

Corollary

For $k \geq 0$, let H_n^k denote the affine hyperplane

$$H_n^k = \{a = (a_1, \ldots, a_n) \in \mathbb{R}^n : (a, \varepsilon(k \mod n)) = \left\lceil \frac{k}{n} \right\rceil \} \cap V$$

inside V, where $1 \leq (k \mod n) \leq n$. Then under the correspondence π, the n-cores λ with $\lambda_1 = k$ all lie inside $H_n^k \cap \Lambda_R$.
The bijection Φ^n_k

7 = $\lambda_1 = (a_i - 1)n + i = (2 - 1)4 + 3$.

$H_4^{7} = \{(a_1, a_2, a_3, a_4) : a_3 = 2\} \cap V$
The bijection Φ^k_n

Theorem

Let ψ_n be the affine map defined by

$$\psi_n(a_1, \ldots, a_n) = (a_n + 1, a_1, a_2, \ldots, a_{n-1}).$$

Then,

$$\pi^{-1} \circ \Phi^k_n \circ \pi(a_1, \ldots, a_n) = \psi_{n-1}^{a_i}(a_1, \ldots, \hat{a}_i, \ldots, a_n)$$

where a_i is the rightmost occurrence of the largest entry among

$\{a_1, \ldots, a_n\}$ and the circumflex indicates omission.
The bijection Φ^k_n

We can factor this map into **translation** composed with **root system embedding**.

Example

Let $n = 3$. The affine hyperplane H_3^7 contains the partition $\pi(3, 1, -4) = (7, 5, 4^2, 3^2, 2^2, 1^2)$. Translation by $t = (-3, 1, 2)$ sends H_3^7 to

$$\left\{ (a_1, a_2, a_3) \in V : a_1 = 0 \right\}$$

and in particular sends $(3, 1, -4)$ to $(0, 2, -2)$.

We view this as a subspace of \mathbb{R}^2 with orthonormal basis $\{e'_1, e'_2\}$ and A_{n-2} root system. The embedding identifies e'_1 with e_3 and e'_2 with e_2 and we have $\psi^3(1, -4) = (-2, 2)$ corresponding to $\Phi^7_3(7, 5, 4^2, 3^2, 2^2, 1^2) = (4, 3, 2, 1)$.
Open questions:

- How do these combinatorics generalize to other reflection groups?
- What does the projection Φ^k_n imply about cells in the affine Grassmannian, k-Schur functions, or blocks in S_n-modules?