Some Problems on Elementary Matrices

Exercise 1. Find a matrix E_1 such that if B is a 3×10 matrix, then E_1B is B with its third row replaced by four times its first row added to its third row.

Answer 1. Apply the given row operation—replace the third row by adding four times the first row to the third row—to I_3, the 3×3 identity matrix to get $E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$.

Exercise 2. Suppose $E_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. If C is a 4×500 matrix, describe in words the matrix E_2C.

Answer 2. E_2C is the matrix C with its second and third rows exchanged.

Exercise 3. Let $G = \begin{bmatrix} 2 & 3 & 6 & 4 \\ 4 & 7 & 2 & 5 \\ 0 & 3 & 8 & 7 \end{bmatrix}$ and $H = \begin{bmatrix} 2 & 3 & 6 & 4 \\ 0 & 1 & -10 & -3 \\ 0 & 3 & 8 & 7 \end{bmatrix}$ find E_3 such that $H = E_3G$.

Answer 3. Since H is G with its second row replaced by -2 times its first row added to its second row, we perform that same elementary row operation on I_3 to get $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Exercise 4. Let $K = \begin{bmatrix} 3 & 6 \\ 8 & 24 \\ 2 & 7 \\ 0 & 9 \end{bmatrix}$ and $L = \begin{bmatrix} 3 & 6 \\ 1 & 3 \\ 2 & 7 \\ 0 & 9 \end{bmatrix}$ find E_4 such that $L = E_4K$.

Answer 4. Since L is K with its second row scaled by a factor of $1/8$, we perform that same elementary row operation on I_4 to get $E_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/8 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.