The Invertible Matrix Theorem

Theorem. Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

a. A is an invertible matrix.

b. A is row equivalent to the $n \times n$ identity matrix, I_n.

c. A has n pivot positions.

d. The equation $Ax = 0$ has only the trivial solution.

e. The columns of A form a linearly independent set in \mathbb{R}^n.

f. The linear transformation given by $x \mapsto Ax$ is one-to-one.

g. The equation $Ax = b$ has at least one solution for each b in \mathbb{R}^n.

h. The columns of A span \mathbb{R}^n.

i. The linear transformation given by $x \mapsto Ax$ maps \mathbb{R}^n onto \mathbb{R}^n.

j. There is an $n \times n$ matrix C such that $CA = I_n$.

k. There is an $n \times n$ matrix D such that $AD = I_n$.

l. A^T is an invertible matrix.

m. $|A| = \det A \neq 0$

n. 0 is not an eigenvalue for A.

© R. Kubelka 2016