THE FLOW OF A DIFFERENTIAL EQUATION

SLOBODAN N. SIMIĆ

Suppose $F : \mathbb{R}^n \to \mathbb{R}^n$ is a C^1 vector field. Then for each initial condition $X_0 \in \mathbb{R}^n$, the ODE $X' = F(X)$ has a unique solution, which we denote by $X(t)$. Thus $X(0) = X_0$ and $X'(t) = F(X(t))$. The flow

$$\varphi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

of $X' = F(X)$ (or of F) is defined by

$$\varphi(t, X_0) = X(t).$$

Therefore, the defining properties of φ are:

$$\varphi(0, X_0) = X_0, \quad \text{and} \quad \frac{d}{dt} \varphi(t, X_0) = F(\varphi(t, X_0)),$$

for all t. The time-t map of the flow is the map

$$\varphi_t : \mathbb{R}^n \to \mathbb{R}^n$$

defined by

$$\varphi_t(X_0) = \varphi(t, X_0).$$

We often abuse the terminology and call the collection \{\varphi_t\} of time-t maps the flow.

So, for any initial state X_0 of the system, the time-t map tells us the state of the system after t units of time. φ_t is a certain transformation of the phase space, \mathbb{R}^n. In fact, because of uniqueness of solutions, we know that

$$\varphi_0 = \text{identity} \quad \text{and} \quad \varphi_{s+t} = \varphi_s \circ \varphi_t,$$

where \circ denotes composition of maps. This implies that φ_t is always invertible and $(\varphi_t)^{-1} = \varphi_{-t}$. Moreover, we know (though we didn’t prove) that for every t, φ_t is C^1 (actually, as smooth as F). So each time-t map is a diffeomorphism of the phase space.

The flow notation is a convenient way of representing solutions of an ODE, but it’s also more than that. Namely, when we write $X(t)$, we are only paying attention to how one particular solution depends on time. When writing $\varphi_t(X_0)$, we care about the dependence of every solution on the initial condition, thus adopting a more global point of view. This way X_0 becomes a variable and since the subscript 0 in X_0 suggests that X_0 is somehow “fixed”, without fear of confusion, we rename the initial condition X_0 into X and write $\varphi_t(X)$ for the solution that starts at X at time $t = 0$.

Example 1. If F is linear, $F(X) = AX$, where A is an $n \times n$ matrix, then the flow is

$$\varphi_t(X) = \exp(tA)X.$$

Therefore, each time-t map φ_t, is a linear map. The flow of a linear vector field is itself linear. For instance, if

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$

Date: November 30, 2005.
then φ_t is the clockwise rotation by t radians.

Example 2. If $F(x, y) = (x + y^2, -y)$, then the flow F (as shown in class) is

$$\varphi_t(x, y) = \left((x + \frac{1}{3} y^2)e^t - \frac{1}{3} y^2 e^{-2t}, ye^{-t} \right).$$

Note how the flow of a nonlinear vector field is nonlinear. To see what happens to a particular point as t varies, take $(x, y) = (-1, \sqrt{3})$; then

$$\varphi_t(-1, \sqrt{3}) = (-e^{-2t}, \sqrt{3}e^{-t}).$$

This is the solution that starts at $(-1, \sqrt{3})$. The phase portrait is given in Figure 1. The origin is a saddle.

![Figure 1. The phase portrait.](image-url)

What does the diffeomorphism $\varphi_t : \mathbb{R}^2 \to \mathbb{R}^2$ (for a fixed t) do to various types of sets in the plane? For instance, if

$$S = \{(x, y) : 0 \leq x, y \leq 1\},$$

i.e., S is the unit square, what is the image $\varphi_t(S)$ of S under φ_t? To find out, let’s first see what φ_t does to horizontal and vertical lines. If H is the horizontal line $y = c$ (constant), then for any $(x, c) \in H$, we have

$$\varphi_t(x, c) = \left((x + \frac{1}{3} c^2)e^t - \frac{1}{3} c^2 e^{-2t}, ce^{-t} \right).$$

Observe that the y-coordinate is constant, since it doesn’t depend on x. (Remember that t is fixed.) Therefore, φ_t takes horizontal lines to horizontal lines.

Let V be the vertical line $x = c$. Then for any $(c, y) \in V$, we have

$$\varphi_t(c, y) = \left((c + \frac{1}{3} y^2)e^t - \frac{1}{3} y^2 e^{-2t}, ye^{-t} \right).$$

As y varies, what type of curve does this point traverse? To answer this question, set $\varphi_t(c, y) = (u, v)$ and express u in terms of v. After a little bit of work, we obtain

$$u = ce^t + \frac{1}{3} (e^{3t} - 1)v^2,$$
which defines a parabola. Therefore, \(\varphi_t \) takes vertical lines to parabolas. This means that \(\varphi_t(S) \) is the set bounded by two horizontal line segments and two parabolic segments as in Figure 2.

Figure 2. The image of the unit square \(S \) under the time-\(t \) map of the flow.

Bonus. What is the area of \(\varphi_t(S) \)? There is a result in geometry that says that if the divergence \(\text{div} \, F \) is positive, then, for \(t > 0 \), \(\varphi_t \) expands area, if \(\text{div} \, F < 0 \), it shrinks it, and if \(\text{div} \, F = 0 \), then \(\varphi_t \) is area preserving. Recall that the divergence of \(F = (f, g) \) is defined by

\[
\text{div} \, F = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}.
\]

Since in our case \(f(x, y) = x + y^2 \) and \(g(x, y) = -y \), the divergence is zero, so \(\varphi_t \) preserves area. Therefore,

\[
\text{area}(\varphi_t(S)) = \text{area}(S) = 1.
\]

Remark. (a) Recall that the existence and uniqueness theorem for ODEs guarantees that solutions are defined only for \(t \) close to 0. Therefore, our flow \(\varphi(t, X) \) is defined only for \(t \) in some neighborhood \(J \subset \mathbb{R} \) of zero. This neighborhood in general depends on \(X \), so we can write \(J = J(X) \). The flow should therefore be called the local flow, to indicate that solutions are only defined locally (in \(t \)). It would also be more correct to say that \(\varphi \) is defined on the set

\[
\Omega = \{(t, X) \in \mathbb{R} \times \mathbb{R}^n : t \in J(X)\};
\]

*not on all of \(\mathbb{R} \times \mathbb{R}^n \).

(b) Given a (smooth) collection of maps \(\varphi_t : \mathbb{R}^n \to \mathbb{R}^n \) satisfying \(\varphi_0 = \text{identity} \) and \(\varphi_{s+t} = \varphi_s \circ \varphi_t \), we can always recover the vector field \(F \) so that \(\varphi_t \) is the flow of \(F \). Just differentiate with respect to \(t \):

\[
F(X) = \left. \frac{d}{dt} \varphi_t(X) \right|_{t=0}.
\]