5.3, ex. 3: Let us inductively define a sequence \((x_n)\) in \(I = [a, b]\) as follows. Let \(x_1 = a\). Then, by assumption, there exists \(x_2 \in I\) such that \(|f(x_2)| \leq |f(x_1)|/2\). Applying the assumption again, we obtain \(x_3 \in I\) such that \(|f(x_3)| \leq |f(x_2)|/2\). Continuing in this way, we obtain a sequence \((x_n)\) in \(I\) satisfying

\[
|f(x_n)| \leq \frac{1}{2} |f(x_{n-1})| \leq \frac{1}{2^2} |f(x_{n-2})| \leq \cdots \leq \frac{1}{2^{n-1}} |f(x_1)|.
\]

Therefore, \(f(x_n) \to 0\), as \(n \to \infty\). Since \((x_n)\) is bounded, by Bolzano-Weierstraß it has a convergent subsequence \((x_{n_k})\). Call its limit \(x_*\). As \(a \leq x_n \leq b\), for all \(n \in \mathbb{N}\), it follows that \(x_* \in I\). Since \(f\) is continuous, we obtain

\[
f(x_*) = \lim_{k \to \infty} f(x_{n_k}) = 0. \quad \Box
\]

5.3, ex. 6: Let

\[g(x) = f(x) - f\left(x + \frac{1}{2}\right).\]

It suffices to show that \(g(c) = 0\), for some \(0 \leq c \leq 1/2\).

Since \(f\) is continuous, so is \(x \mapsto f\left(x + \frac{1}{2}\right)\), as the composition of two continuous functions. It follows that \(g\) is continuous on its domain \([0, \frac{1}{2}]\). Furthermore, \(g(0) = f(0) - f(1/2)\) and

\[g\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) - f(1) = f\left(\frac{1}{2}\right) - f(0).\]

If \(g(0) = 0\), then \(f(0) = f(1/2)\), so we can take \(c = 0\). Otherwise, \(g(0) \neq 0\), so \(g(0)\) and \(g(1/2)\) are of opposite sign. By the Intermediate Value Theorem (IVT), it follows that there exists \(c \in (0, 1/2)\) such that \(g(c) = 0\). \(\Box\)

5.3, ex. 13: Since \(f(x) \to 0\), as \(x \to \pm \infty\), it follows that there exists \(K > 0\) such that \(|f(x)| < 1\) for all \(x\) such that \(|x| > K\). On the other hand, \(|f|\) is continuous, so it is bounded on the compact interval \([-K, K]\), say by \(L\). We obtain \(|f(x)| \leq \max\{1, L\}\), for all \(x \in \mathbb{R}\), so \(f\) is bounded on \(\mathbb{R}\), hence \(m = \inf_{\mathbb{R}} f\) and \(M = \sup_{\mathbb{R}} f\) are finite.

Since \(M = \sup f\), there exist a sequence \((x_n)\) such that \(f(x_n) \to M\), as \(n \to \infty\). Similarly, there exists a sequence \((y_n)\) such that \(f(y_n) \to m\). If \((x_n)\) is bounded, then by Bolzano-Weierstraß it has a convergent subsequence \(x_{n_k} \to c\). Thus, by continuity, \(f(x_{n_k}) \to f(c) = M\), which means that \(f\) attains its absolute maximum at \(c\). Similarly, if \((y_n)\) is bounded, then \(f\) attains its absolute minimum. If both \((x_n)\) and \((y_n)\) are unbounded, then they may not diverge to plus or minus infinity, but they do have to have subsequences \((x_{n_k})\) and \((y_{n_k})\) such that \(|x_{n_k}| \to \infty\) and \(|y_{n_k}| \to \infty\), as \(k \to \infty\). Since the limit of \(f\) at both \(\pm \infty\) equals zero, we obtain

\[M = \lim_{k \to \infty} f(x_{n_k}) = 0 \quad \text{and} \quad m = \lim_{k \to \infty} f(y_{n_k}) = 0.\]

If the maximum and minimum of \(f\) are both zero, then \(f(x) = 0\), for all \(x \in \mathbb{R}\), so \(f\) attains its absolute maximum and minimum (equal to zero) at every point.

To show that \(f\) does not have to attain both its absolute maximum and its absolute minimum, take

\[f(x) = \frac{1}{1 + x^2}. \quad \Box\]
5.3, ex. 17: Suppose f is not constant. Then it takes at least two distinct values, say $u < v$. Since f is continuous, by the Intermediate Value Theorem, every number in (u, v) is a value of f. But every open interval (u, v) contains both rational and irrational numbers, contradicting the assumption that f takes only rational or only irrational values.

\[\square\]

5.4, ex. 2: Suppose $x, y \in A = [1, \infty)$. Then

\[
|f(x) - f(y)| = \left| \frac{1}{x^2} - \frac{1}{y^2} \right| = \frac{x + y}{x^2y^2}|x - y| = \left(\frac{1}{xy^2} + \frac{1}{x^2y} \right)|x - y| \leq \left(\frac{1}{1} + \frac{1}{1} \right)|x - y| = 2|x - y|.
\]

Therefore, f is Lipschitz on A, and as such uniformly continuous. Let us use the sequential criterion to show that f is not uniformly continuous on $B = (0, \infty)$. Define $x_n = 1/\sqrt{n} + 1$ and $y_n = 1/\sqrt{n}$. Then $x_n - y_n \to 0$, as $n \to \infty$, whereas

\[f(x_n) - f(y_n) = (n + 1) - n = 1 \neq 0,
\]

proving the claim.

\[\square\]

5.4, ex. 8: Suppose that both f and g are uniformly continuous on \mathbb{R}. Let us use the Sequential Criterion for uniform continuity to show that $f \circ g$ is uniformly continuous on \mathbb{R}. Suppose that (x_n) and (y_n) are sequences of real numbers such that $x_n - y_n \to 0$, as $n \to \infty$. Since g is uniformly continuous, it follows by the Sequential Criterion that $g(x_n) - g(y_n) \to 0$, as $n \to \infty$. Let $u_n = g(x_n)$ and $v_n = g(y_n)$. Since f is uniformly continuous, by the Sequential Criterion we obtain $f(u_n) - f(v_n) \to 0$. But $f(u_n) = (f \circ g)(x_n)$ and $f(v_n) = (f \circ g)(y_n)$. Therefore, again by the Sequential Criterion, it follows that $f \circ g$ is uniformly continuous on \mathbb{R}.

\[\square\]

5.6, ex. 8: Suppose the contrary, i.e., $f^{-1}(y) \geq g^{-1}(y)$, for some $y \in f(I) \cap g(I)$. Let $x_1 = f^{-1}(y)$ and $x_2 = g^{-1}(y)$. Since f is increasing, $x_1 \geq x_2$ implies $f(x_1) \geq f(x_2)$. On the other hand, the assumption $f > g$ on I implies that $f(x_2) > g(x_2)$. Therefore, $f(x_1) > g(x_2)$. But $f(x_1) = f(f^{-1}(y)) = y$ and $g(x_2) = g(g^{-1}(y)) = y$, so $y > y$ – an impossibility. Therefore, $f^{-1}(y) < g^{-1}(y)$, for all $y \in f(I) \cap g(I)$.

\[\square\]

Remark: Recall that the graph of f^{-1} is obtained by reflecting the graph of f relative to the line $L : y = x$, and similarly for the graph of g. Geometrically, $f > g$ means that the graph of f is above the graph of g. Applying the reflection relative to L, we obtain that the graph of f^{-1} is below the graph of g^{-1}, i.e., $f^{-1} < g^{-1}$, wherever both function are defined.

5.6, ex. 9: Suppose that $f(u) = f(v)$, for some $u, v \in I$. If $u, v \in \mathbb{Q}$, then by definition of f, we have $u = v$. If $u, v \notin \mathbb{Q}$, then $1 - u = 1 - v$, which implies $u = v$. If $u \notin \mathbb{Q}$, but $v \in \mathbb{Q}$, then $u = 1 - v$, which is impossible, because $1 - v \in \mathbb{Q}$, and a number cannot be both rational and irrational. Therefore, f is injective.
Let \(g = f \circ f \). If \(x \in \mathbb{Q} \), then clearly \(g(x) = x \). If \(x \not\in \mathbb{Q} \), then \(f(x) = 1 - x \not\in \mathbb{Q} \), so \(g(x) = f(1 - x) = 1 - (1 - x) = x \). In either case, \(g(x) = x \), i.e., \(f \circ f \) is the identity function.

In other words, \(f^{-1} = f \).

Suppose \(a \in I \) is arbitrary and assume \(x_n \to a \), as \(n \to \infty \). For rational \(x_n \), we have \(f(x_n) = x_n \to a \). For irrational \(x_n \), \(f(x_n) = 1 - x_n \to 1 - a \). Therefore, \(f \) has a limit at \(a \) if and only if \(a = 1 - a \), i.e., iff \(a = 1/2 \), and in that case the limit equals 1/2. Since \(f(1/2) = 1/2 \), it follows that \(f \) is continuous at 1/2. It is discontinuous elsewhere since it does not have a limit except at 1/2. \(\square \)

5.6, ex. 10: Suppose that \(f : [a, b] \to \mathbb{R} \) attains its absolute maximum at an interior point \(c \) of \(I = [a, b] \). Assume that \(f \) is injective on \(I \). If \(f \) is increasing, then \(f(c) < f(b) \). If \(f \) is decreasing, then \(f(a) > f(c) \). In either case, \(f(c) \) is not the absolute maximum of \(f \), contradicting our assumption. Therefore, \(f \) is not injective on \(I \). The case when \(f \) attains an absolute minimum at an interior point of \(I \) is handled similarly. \(\square \)

Remark: In the proof we used the fact that if \(f \) is 1–1 and continuous, then \(f \) is strictly monotonic. Here’s an alternative proof, which doesn’t use this fact. Suppose that \(f \) attains its absolute maximum at \(c \in (a, b) \). Then \(f(c) \geq f(x) \), for all \(x \in [a, b] \). If \(f(a) = f(c) \) or \(f(b) = f(c) \), we are done. Otherwise, \(f(a) < f(c) \) and \(f(b) < f(c) \). Let \(\lambda \) be an arbitrary number such that \(\max\{f(a), f(b)\} < \lambda < f(c) \). Then by the IVT there exist \(x_1 \in (a, c) \) such that \(f(x_1) = \lambda \). Similarly, there exists \(x_2 \in (c, b) \) such that \(f(x_2) = \lambda \). Since \(x_1 < x_2 \), it follows that \(f \) is not injective. \(\square \)

5.6, ex. 12: Assume \(x \in (0, 1) \). We claim that \(f(0) < f(x) < f(1) \). If \(f(x) < f(0) \) (note that \(f(x) \) must be different from \(f(0) \) since \(f \) does not take on any value twice), then by the IVT there exists \(c \in (x, 1) \), such that \(f(c) = f(0) \), which is impossible. Therefore, \(f(0) < f(x) \). If \(f(x) > f(1) \), then, again by the IVT, there exists \(c \in (0, x) \) such that \(f(c) = f(1) \), which is also impossible. Therefore, \(f(0) < f(x) < f(1) \). Let \(y \in (x, 1) \) be arbitrary. In a completely analogous way, we can show \(f(x) < f(y) < f(1) \). But this means that \(f \) is strictly increasing. \(\square \)