Math 131A, Fall 2006

Midterm 1 Solutions

September 27, 2006

Name: Granwyth Hulatberi

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Score

Explain your work
1. **(25 points)** Let $f : X \to Y$ be a function and suppose A and B are subsets of Y. Show that

$$f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B).$$

Proof: (\subseteq) Suppose $x \in f^{-1}(A \setminus B)$. Then $f(x) \in A \setminus B$. Therefore, $f(x) \in A$ and $f(x) \notin f(B)$. This implies that $x \in f^{-1}(A)$ and $x \notin f^{-1}(B)$. By definition of set difference, $x \in f(A) \setminus f(B)$. This proves that $f^{-1}(A \setminus B) \subseteq f^{-1}(A) \setminus f^{-1}(B)$.

(\supseteq) Suppose $x \in f^{-1}(A) \setminus f^{-1}(B)$. Then $x \in f^{-1}(A)$ and $x \notin f^{-1}(B)$. Therefore, $f(x) \in A$ and $f(x) \notin B$. By definition of set difference, $f(x) \in A \setminus B$. Finally, by definition of the preimage, $x \in f^{-1}(A \setminus B)$. This proves that $f^{-1}(A \setminus B) \supseteq f^{-1}(A) \setminus f^{-1}(B)$ and completes the proof.
2. (25 points) Show that the set

\[S = \left\{ \frac{m^2}{n^2} : m \in \mathbb{N}, n \in \mathbb{N} \right\} \]

is countable.

Proof 1: Define \(f : \mathbb{Q} \to S \) by

\[f(x) = x^2. \]

We claim that \(f \) is a surjection. Let \(y \in S \) be arbitrary. Then \(y = \frac{m^2}{n^2} = (m/n)^2 \), for some \(m, n \in \mathbb{N} \). It follows that \(y = f(x) \), where \(x = m/n \in \mathbb{Q} \). This proves that \(f \) is onto.

Since \(\mathbb{Q} \) is countable and \(f \) maps \(\mathbb{Q} \) onto \(S \), \(S \) is countable.

Proof 2: A map \(g : \mathbb{N} \times \mathbb{N} \to S \) defined by \(g(m, n) = \frac{m^2}{n^2} \) is a surjection. Since \(\mathbb{N} \times \mathbb{N} \) is countable, so is \(S \).

Proof 3: Since \(S \subset \mathbb{Q} \) and \(\mathbb{Q} \) is countable, so is \(S \).
3. (25 points) Let $A = \{n^{-1} : n \in \mathbb{N}\}$. Compute $\inf A$.

Proof: First observe that $A = \{1, 2, \frac{1}{3}, 4, \frac{1}{5}, \ldots\}$.

We claim that the infimum of A is zero. Since n^{-1} is either equal to n or $1/n$, 0 is a lower bound, so it suffices to show that it is the greatest lower bound. Suppose not, i.e., suppose that some $\epsilon > 0$ is also a lower bound for A. By the Archimedean property, there exists a natural number n such that $n > 1/\epsilon$. We can assume n is odd; otherwise, replace n by $n + 1$. Since n is odd, $n^{-1} = 1/n < \epsilon$. But $n^{-1} \in A$ – a contradiction! Therefore,

$$\inf A = 0.$$
4. (25 points) Prove that there exists no rational number whose cube equals 2.

Proof: Suppose the contrary, that is, there exists a rational number \(r \) such that \(r^3 = 2 \). Then \(r = m/n \), for some \(m \in \mathbb{Z} \), \(n \in \mathbb{N} \) and \(\gcd(m, n) = 1 \). Since \(r^3 = 2 \), we obtain

\[
m^3 = 2n^3.
\]

Therefore, \(m^3 \) is even. It follows that \(m \) must be even (otherwise, if \(m \) were odd, \(m^3 \) would be odd). Thus \(m = 2k \), for some integer \(k \). We obtain

\[
8k^3 = 2n^3, \quad \text{i.e.}, \quad 4k^3 = n^3.
\]

Therefore \(n^3 \) is even, so by the same argument as above, \(n \) is even. It follows that \(\gcd(m, n) \geq 2 \), contrary to our assumption. This completes the proof.