Name: Granwyth Hulatberi

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Explain your work
1. **(25 points)** Consider the differential equation

\[x' = (x^2 - x - 2) \arctan x^2. \]

(a) Draw the phase line.

(b) Classify all equilibria.

(c) Sketch the *graph* of the solution satisfying the initial condition \(x(0) = 1 \).

Solution: (a) Since \(x^2 - x - 2 = (x + 1)(x - 2) \) and \(\arctan 0 = 0 \), the equilibria are \(-1, 0\), and \(2\). Observe that \(\arctan x^2 \geq 0 \), for all \(x \), so the sign of \((x^2 - x - 2) \arctan x^2 \) equals the sign of \(x^2 - x - 2 \). This sign is negative on \((-1, 0)\) and \((0, 2)\), and positive otherwise. This means that solutions starting in \((-1, 0)\) and \((0, 2)\) decrease and all others (except for the equilibria) increase. Therefore, the phase line looks like this:

![Phase Line Diagram]

(b) It follows that \(-1\) is a sink, \(0\) is a node, and \(2\) is a source.

(c) Since \(0 < x(0) < 2\) and \(t \mapsto x(t) \) is decreasing, it follows that \(x(t) \to 0\), as \(t \to \infty \). Similarly, \(x(t) \to 2\), as \(t \to -\infty \). The graph of this solution looks approximately like this:

![Graph of Solution]
2. (25 points) Consider the planar linear system

\[X' = AX, \quad \text{where} \quad A = \begin{bmatrix} -4 & -2 \\ -1 & -3 \end{bmatrix}. \]

(a) Find the eigenvalues and eigenvectors of \(A \).
(b) Find a matrix \(T \) that puts \(A \) into canonical form. Write down the canonical form \(B \) of \(A \).
(c) Find the general solution of both \(X' = AX \) and \(Y' = BY \).
(d) Sketch the phase portraits of both systems. What type of equilibrium is this?

Solution: (a) The trace of \(A \) is \(-7\) and the determinant equals \(10\), so the eigenvalues of \(A \) are

\[\lambda_{1,2} = \frac{\text{Trace}(A) \pm \sqrt{\text{Trace}(A)^2 - 4 \det A}}{2} = -2, -5. \]

Eigenvectors can be computed in the usual way by solving the equations

\[(A - \lambda_j)V_j = 0. \]

We obtain

\[V_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \text{and} \quad V_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}. \]

(b) Setting

\[T = [V_1 | V_2] = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}, \]

we obtain a matrix that puts \(A \) into its canonical form:

\[B = T^{-1}AT = \begin{bmatrix} -2 & 0 \\ 0 & -5 \end{bmatrix}. \]

(c) The general solution of \(X' = AX \) is

\[X(t) = c_1 e^{-2t}V_1 + c_2 e^{-5t}V_2 = \begin{bmatrix} c_1 e^{-2t} + 2c_2 e^{-5t} \\ -c_1 e^{-2t} + c_2 e^{-5t} \end{bmatrix}. \]

The general solution to \(Y' = BY \) is

\[Y(t) = c_1 e^{-2t}E_1 + c_2 e^{-5t}E_2 = \begin{bmatrix} c_1 e^{-2t} \\ c_2 e^{-5t} \end{bmatrix}. \]

(d) The phase portrait of \(X' = AX \) is given in Figure 1. The equilibrium is a sink.
3. (25 points) (a) Show that if $X(t)$ is a solution to a linear system $X' = AX$, then so is $Y(t) = X(t + a)$, for any real number a.

(b) Suppose that $X_1(t)$ and $X_2(t)$ are both solutions to $X' = AX$. If $X_1(t_1) = X_2(t_2)$, for some real numbers t_1, t_2, what is the relation between X_1 and X_2? In particular, what can be said about the solution curves defined by X_1 and X_2?

Solution: (a) Assume that $X(t)$ is a solution to $X' = AX$. Then $X'(t) = AX(t)$, for all real numbers t. Therefore,

$$Y'(t) = \frac{d}{dt}X(t + a)$$
$$= X'(t + a)$$
$$= AX(t + a)$$
$$= AY(t).$$

This proves that $Y(t)$ is also a solution to $X' = AX$.

Remark. Observe that the $Y(t)$ and $X(t)$ define the same solution curves; the former is just slightly ahead (if $a > 0$) or behind (if $a < 0$) the latter.

(b) Let $Y_1(t) = X_1(t + t_1)$ and $Y_2(t) = X_2(t + t_2)$. By (a), both Y_1 and Y_2 are solutions to $X' = AX$. Furthermore,

$$Y_1(0) = X_1(t_1) = X_2(t_2) = Y_2(0).$$

By uniqueness of solutions, $Y_1(t) = Y_2(t)$, for all real numbers t. This implies

$$X_1(t + t_1) = X_2(t + t_2),$$
for all \(t \). Or, by a change of variables,
\[
X_1(t + t_1 - t_2) = X_2(t),
\]
for all \(t \). Therefore, \(X_1 \) and \(X_2 \) define the same solution curve.

4. (25 points) A solution \(X(t) \) to a system of differential equations is called \textbf{periodic} if it is not an equilibrium solution (i.e., it is not constant) and there exists a real number \(\tau > 0 \) such that
\[
X(t + \tau) = X(t),
\]
for all \(t \). The smallest such number \(\tau \) is called the \textbf{period} of \(X(t) \).

(a) If
\[
A = \begin{bmatrix} 0 & \beta \\ -\beta & 0 \end{bmatrix},
\]
show that all non-equilibrium solutions to \(X' = AX \) are periodic with the same period. Find the period.

(b) If \(Y(t) \) is a periodic solution to \(Y' = BY \), show that \(X(t) = TY(t) \) is a periodic solution to \(X' = AX \), where \(B = T^{-1}AT \) and \(T \) is any matrix with non-zero determinant.

(c) If a matrix \(A \) has purely imaginary eigenvalues, show that every non-equilibrium solution to \(X' = AX \) is periodic with the same period. What is that period?

Solution: (a) If \(A \) is in the given form, we know that the general solution to \(X' = AX \) is
\[
X(t) = c_1 \cos \beta t \, E_1 + c_2 \sin \beta t \, E_2,
\]
where \(E_1, E_2 \) are the vectors in the standard basis for \(\mathbb{R}^2 \). The period of \(\cos \beta t, \sin \beta t \) (where, without loss of generality we assume \(\beta > 0 \)) is
\[
\zeta = \frac{2\pi}{\beta}.
\]
Therefore, for every \(c_1, c_2 \), \(X(t + \tau) \equiv X(t) \). This shows that every non-equilibrium solution is periodic with period \(\zeta \).

(b) Suppose that \(Y(t + \tau) = Y(t) \), for all \(t \). Then for all \(t \),
\[
X(t + \tau) = TY(t + \tau) = TY(t) = X(t).
\]
Therefore, \(X(t) \) is periodic with the same period as \(Y(t) \).
(c) Suppose that A has eigenvalues $\pm i\beta$, for some $\beta > 0$. Then there exists an invertible matrix T such that

$$B = T^{-1}AT = \begin{bmatrix} 0 & \beta \\ -\beta & 0 \end{bmatrix}. $$

It was shown in class that all solutions to $X' = AX$ are of the form $TY(t)$, where $Y(t)$ is a solution to $Y' = BY$. Since, by part (a), every non-equilibrium solution to $Y' = BY$ is periodic with period $2\pi/\beta$, (c) implies that every non-equilibrium solution to $X' = AX$ is periodic with period $2\pi/\beta$.