I. Background material:
- Dot and cross products and their properties
 - Equations of lines, planes and quadric surfaces (ellipsoids, paraboloids, hyperboloids, cylinders, cones)
 - Slicing and projecting quadric surfaces
 - Examples!

II. Vector functions:
- Definition, vector functions as space curves
 - Differentiation and integration
 - Arc length and curvature (various formulas)
 - Velocity, acceleration, and Newton’s second law
 - Examples!

III. Differential multivariable calculus:
- Functions of several variables, finding domains
 - Definition and calculation of limits (different limits along different paths/squeeze theorem, limit rules)
 - Definition of and proving continuity (elementary functions are continuous)
 - Definition and geometric interpretation of partial derivatives
 - Differentiability vs. partial derivatives
 - Meaning and computation of linearization
 - Equation of the tangent plane to a surface given as the graph of function or a level surface
 - The Chain Rule
 - Definition, meaning and calculation of directional derivatives
 - The gradient: definition, meaning and applications
 - Finding maxima and minima without constraints: first and second derivative tests
 - Finding maxima and minima with constraints: Lagrange multipliers (geometric interpretation!), finding absolute extrema
 - Examples!

IV. Integral multivariable calculus:
- Double integrals over rectangles: definition, meaning, calculation (iterated integrals and Fubini’s theorem)
 - Double integrals over regions of type I and II, and their unions: Fubini’s theorem
 - Double integrals in general regions (don’t forget the r!)
 - Triple integrals over boxes and regions of type I, II, and III: calculation via Fubini’s theorem
 - Calculation of areas and volumes
 - Draw good pictures
 - Examples!