You are allowed to use the literature but not talk to each other.
1. **(25 points)** Suppose $f : \mathbb{E}^n \to \mathbb{E}^1$ is a continuous function.

 (a) If $f(x) \to \infty$, as $|x| \to \infty$, show that for any number c, the set $K = \{ x \in \mathbb{E}^n : f(x) \leq c \}$ is compact.

 (b) Let C be a connected subset of \mathbb{E}^n and assume that f takes only integer values on C. Show that f is constant.

Proof:

(a) Since $K = f^{-1}((-\infty, c])$ and $(-\infty, c]$ is closed in \mathbb{E}^1, it follows that K is closed. Suppose that K is unbounded. Then there exits a sequence (x_k) in K such that $|x_k| \to \infty$, as $k \to \infty$. By assumption, $f(x_k) \to \infty$, which contradicts the fact that $x_k \in K$, for all K. Therefore, K is closed and bounded, hence compact.

(b) Since C is connected, it follows that $f(C) \subset \mathbb{E}^1$ is connected as well. Thus $f(C)$ is an interval. On the other hand, $f(C) \subset \mathbb{Z}$. The only closed interval contained in \mathbb{Z} is a single point set, which implies that f is constant.
2. (25 points) Recall that for a twice differentiable real-valued function f on \mathbb{E}^n, the Laplacian of f is defined by

$$\Delta f = \sum_{i=1}^{n} \partial_{ii} f.$$

Suppose that $f : \mathbb{E}^n \to \mathbb{E}^1$ is C^2 and let $A = [a_{ij}]$ be an orthogonal matrix ($A^T A = I$). Define $g(x) = f(Ax)$. Show that

$$\Delta g(x) = \Delta f(Ax).$$

In other words, show that the Laplacian is invariant under orthogonal transformations of \mathbb{E}^n.

Proof: By the chain rule, $dg(x) = df(Ax)A$. This yields

$$\partial_j g(x) = \sum_{i=1}^{n} \partial_i f(Ax) a_{ij}.$$

Differentiating with respect to x_j, we obtain

$$\partial_{jj} g(x) = \sum_{i=1}^{n} \sum_{k=1}^{n} \partial_{ki} f(Ax) a_{kj} a_{ij}.$$

Therefore,

$$\Delta g(x) = \sum_{j} \partial_{jj} g(x)$$

$$= \sum_{i,j,k} \partial_{ki} f(Ax) a_{kj} a_{ij}$$

$$= \sum_{i,k} \partial_{ki} f(Ax) \sum_{j} a_{ij} a_{kj}$$

$$= \sum_{i,k} \partial_{ki} f(Ax) \sum_{j} (A)_{kj} (A^T)_{ji}$$

$$= \sum_{i,k} \partial_{ki} f(Ax) (AA^T)_{ki}$$

$$= \sum_{i,k} \partial_{ki} f(Ax) \delta_{ki}$$

$$= \sum_{i} \partial_{ii} f(Ax)$$

$$= \Delta f(Ax),$$

where δ_{ki} denotes the Kronecker delta.
3. (25 points) Using the method of Lagrange multipliers, find the constrained extrema of the function \(f(x, y) = x^2 + y^2 \) on the set

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,
\]

where \(0 < a < b \).

Solution: Let \(\phi(x, y) = (x/a)^2 + (y/b)^2 - 1 \) and define \(F = f + \lambda \phi \). We are looking for solutions of the system of equations

\[
\nabla F(x, y) = 0, \quad \phi(x, y) = 0.
\]

We have \(F_x = 2x + 2\lambda x/a^2 \) and \(F_y = 2y + 2\lambda y/b^2 \), so \(F_x = 0 \) iff \(x = 0 \) or \(1 + \lambda/a^2 = 0 \), and \(F_y = 0 \) iff \(y = 0 \) or \(1 + \lambda/b^2 = 0 \). Note that \(x \) and \(y \) cannot be zero simultaneously. If \(x = 0 \), then \(y = \pm b \) and if \(y = 0 \), then \(x = \pm a \). Observe also that \(1 + \lambda/a^2 \) and \(1 + \lambda/b^2 \) cannot both be zero, since \(a \neq b \).

Therefore, we get four critical points of \(F \): \((\pm a, 0)\) and \((0, \pm b)\). Since \(f(\pm a, 0) = a^2 < b^2 = f(0, \pm b) \), \(f \) attains a constrained minimum at \((\pm a, 0)\) and a constrained maximum at \((0, \pm b)\).

Remark. Note that \(f \) is just the square of the distance from the origin, so the problem asks for the closest and farthest point on the ellipsoid \(\phi = 0 \) from the origin.
4. (25 points) Let \(f : \mathbb{E}^2 \to \mathbb{E}^1 \) be of class \(C^1 \), with \(f(2, -1) = -1 \). Set

\[
G(x, y, z) = f(x, y) + z^2, \quad H(x, y, z) = xz + 3y^3 + z^3.
\]

The equations

\[
G(x, y, z) = 0, \quad H(x, y, z) = 0.
\]

have the solution \((x, y, z) = (2, -1, 1)\).

(a) What conditions on the derivative of \(f \) ensure that there are \(C^1 \) functions \(x = g(y) \) and \(z = h(y) \) defined on an open set in \(\mathbb{E}^1 \) that satisfy both equations (1), such that \(g(-1) = 2 \) and \(h(-1) = 1 \)?

(b) Under the conditions of (a), and assuming \(df(2, -1) = \begin{bmatrix} 1 & -3 \end{bmatrix} \), find \(g'(-1) \) and \(h'(-1) \).

Solution: (a) Let \(F = (G, H) \) and define \(w = (x, z) \). Then

\[
\frac{\partial F}{\partial w} = \begin{bmatrix}
G_x & G_z \\
H_x & H_z
\end{bmatrix} = \begin{bmatrix}
f_x & 2z \\
z & x + 3z^2
\end{bmatrix},
\]

so if \(\det \frac{\partial F}{\partial w}(2, -1, 1) = (3z^2 f_x - 2z^2)(2, -1, 1) = 5f_x(2, -1) - 2 \neq 0 \), i.e., if \(f_x(2, -1) \neq 2/5 \), then by the Implicit Function Theorem, the equation \(F(x, y, z) = (0, 0) \) can be solved for \(x \) and \(z \) in terms of \(y \) in a neighborhood of \((2, -1, 1)\). The solution is given by a \(C^1 \) function \((x, z) = \phi(y) = (g(y), h(y))\) such that \(g(-1) = 2 \) and \(h(-1) = 1 \).

(b) Also by the Implicit Function Theorem, we have that

\[
\begin{bmatrix}
g'(-1) \\
h'(-1)
\end{bmatrix} = \phi'(-1) = -\left(\frac{\partial F}{\partial w}(2, -1, 1) \right)^{-1} \frac{\partial F}{\partial y}(2, -1, 1).
\]

Since

\[
\frac{\partial F}{\partial y}(2, -1, 1) = \begin{bmatrix} G_y(2, -1, 1) \\ H_y(2, -1, 1) \end{bmatrix} = \begin{bmatrix} -3 \\ 9 \end{bmatrix}
\]

and

\[
\left(\frac{\partial F}{\partial w}(2, -1, 1) \right)^{-1} = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} 5 & -2 \\ -1 & 1 \end{bmatrix}
\]

we have

\[
\begin{bmatrix}
g'(-1) \\
h'(-1)
\end{bmatrix} = -\frac{1}{3} \begin{bmatrix} 5 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 9 \end{bmatrix} = \begin{bmatrix} 11 \\ -4 \end{bmatrix}.
\]
5. **(25 points)** Define a function f by

$$f(x, y) = \frac{1}{1 - x^2 - y^2}.$$

(a) Find the domain D of f and show that f is of class C^∞ on D.

(b) Show that f is analytic at $(0, 0)$, i.e., show that f can be expanded into a Taylor series at $(0, 0)$ which converges to f in some neighborhood U of the origin. Find the largest such neighborhood U.

(c) Compute $\partial_1^4 \partial_2^3 f(0, 0) = \frac{\partial^7 f}{\partial x^4 \partial y^3}(0, 0)$.

Solution:

(a) The domain of f is the plane minus the unit circle. f is C^∞ because it is rational.

(b) If $x^2 + y^2 < 1$, then

$$f(x, y) = \sum_{n=0}^{\infty} (x^2 + y^2)^n = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} x^{2k} y^{2(n-k)}.$$

This proves that f is analytic at $(0, 0)$. The largest neighborhood on which this series converges is the open unit disk $U = \{(x, y) : x^2 + y^2 < 1\}$.

(c) Since all the powers of x and y in the above series are even, it follows that

$$\partial_1^4 \partial_2^3 f(0, 0) = 0.$$
6. (25 points) Let $Q = (0, \infty)^2$ be the first quadrant of \mathbb{E}^2 and define a map $\phi : Q \to Q$ by

$$\phi(u, v) = \left(\frac{u}{v}, uv \right).$$

(a) Show that ϕ is a diffeomorphism.

(b) Let B be the portion of Q lying between the hyperbolas $xy = 1$ and $xy = 2$ and the two straight lines $y = x$ and $y = 4x$. Sketch B and find the set $A \subset Q$ such that $B = \phi(A)$.

(c) Evaluate the integral $\int_B x^2 y^3$.

Solution: (a) Both components of ϕ are C^∞ on Q, so ϕ is C^∞ on Q. Solving $\phi(u, v) = (x, y)$ for u, v, we obtain

$$\phi^{-1}(x, y) = \left(\sqrt{xy}, \sqrt{\frac{y}{x}} \right).$$

Since ϕ^{-1} is also C^∞ on Q, it follows that ϕ is a C^∞ diffeomorphism of Q.

(b) Applying ϕ^{-1} to the boundary of B, we obtain

$$A = [1, \sqrt{2}] \times [1, 2].$$

See Figure 1.

![Figure 1: ϕ is a diffeomorphism from A to B.](image)

(c) We will use the change of variables theorem. Observe that

$$\det D\phi(u, v) = \det \begin{bmatrix} \frac{1}{v} & -\frac{u}{v^2} \\ v & u \end{bmatrix} = 2\frac{u}{v} > 0$$
on Q. Thus

$$\int_B x^2 y^3 = \int_A \frac{u^2}{v^2} (uv)^3 \frac{2u}{v}$$

$$= \int_A 2u^6$$

$$= \int_1^2 \int_1^{\sqrt{2}} 2u^6 \, dudv$$

$$= 2 \int_1^{\sqrt{2}} u^6 \, du$$

$$= \frac{2}{7} (8\sqrt{2} - 1).$$