An experiment consists of tossing three fair (not weighted) coins, except one of the three coins has a head on both sides. Compute the probability of obtaining 2 heads.

Solution: The sample space is

\[S = \{HHH, HTH, THH, TTH\}, \]

so \(n(S) = 4 \). The event that 2 heads turn up is

\[E = \{HTH, THH\}, \]

so \(n(E) = 2 \). We make the assumption that each simple event is equally likely. Then

\[P(E) = \frac{n(E)}{n(S)} = \frac{2}{4} = \frac{1}{2}. \]

Remark. I also gave full credit to those who found the probability of obtaining at least 2 heads. Call that event \(F \). Then

\[F = \{HHH, HTH, THH\}, \]

so

\[P(F) = \frac{n(F)}{n(S)} = \frac{3}{4}. \]