I. Background material (Chapter 12):
- Dot and cross products and their properties
- Equations of lines, planes and quadric surfaces (ellipsoids, paraboloids, hyperboloids, cylinders, cones)
- Slicing and projecting quadric surfaces

II. Vector functions (Chapter 13):
- Differentiation and integration
- Arc length and curvature (various formulas)
- Velocity, acceleration, and Newton’s second law

III. Differentiation (Chapter 14):
- Calculation of limits (different limits along different paths/squeeze theorem, limit rules)
- Definition of and proving continuity (elementary functions are continuous)
- Definition and geometric interpretation of partial derivatives
- Differentiability vs. partial derivatives
- Linearization and linear approximation
- Tangent planes (to the graph of function and to a level surface)
- The Chain Rule
- Definition, meaning and calculation of directional derivatives
- The gradient: definition, meaning and applications
- Maxima and minima without constraints: first and second derivative tests
- Maxima and minima with constraints: Lagrange multipliers (geometric interpretation!), finding absolute extrema

IV. Multiple Integrals (Chapter 15):
- Double integrals over rectangles: iterated integrals and Fubini’s theorem
- Double integrals over regions of type I and II (Fubini’s theorem again)
- Polar coordinates (Jacobian = r)
- Triple integrals over boxes and regions of type I, II, and III: Fubini’s theorem
- Calculation of areas and volumes
- Cylindrical coordinates (Jacobian = r)
- Spherical coordinates (Jacobian = ϱ² sin φ)
- Practice drawing good pictures

V. Vector calculus (Chapter 16):
- Line integrals of the first and second kind
- FTC for line integrals. Conservative vector fields
- Green’s theorem and applications (computation of area)
- Curl and div, and applications. Solving \(\nabla f = F \).