1. Exercise 6.1.1 from Pressley

2. Exercise 6.1.3 from Pressley

3. Exercise 6.1.4 from Pressley

4. Let S be a surface of revolution with axis of revolution ℓ. Show that rotations about ℓ are isometries of S.

5. Consider the surface patch
 \[\sigma(u,v) = (u \cos v, u \sin v, \log \cos v + u), \quad u \in \mathbb{R}, \quad -\frac{\pi}{2} < v < \frac{\pi}{2}. \]
 Let $v_1, v_2 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be arbitrary and define the curves γ_1, γ_2 by $\gamma_i(u) = \sigma(u, v_i)$ ($u \in \mathbb{R}$). Show that for arbitrary u_1, u_2, the arc-lengths of $\gamma_1 : [u_1, u_2] \to S$ and $\gamma_2 : [u_1, u_2] \to S$ are the same.

6. Let P be the xy-plane minus the non-negative x-axis, parametrized by polar coordinates (ϱ, θ), where $\varrho > 0$ and $0 < \theta < 2\pi$. Compute the first fundamental form of S in this parametrization.