1. Let D be an open disc in \mathbb{C} and suppose $f \in H(D)$. A boundary point a of D is called a regular point of f if there exists $r > 0$ and a function g holomorphic on $D(a, r)$ such that such that $g = f$ on $D \cap D(a, r)$. Otherwise, a is called singular.

Show that the set of regular points of f is open.

2. If $f \in H(D)$ and every point of the boundary ∂D is a singular point, then ∂D is said to be the natural boundary of f.

Let

$$f(z) = \sum_{n=0}^{\infty} z^{2^n}.$$

(a) Show that the radius of convergence of the given power series is 1.

(b) Show that $f(z^2) = f(z) - z$, for all $z \in \mathbb{D}$.

(c) Let k, n be positive integers and let $a = \exp(2\pi ik/2^n)$. Show that f is unbounded on every radius in \mathbb{D} which ends at a. That is, $f(ra)$ is unbounded, as $r \to 1$.

(d) Show that the unit circle is the natural boundary of f.

3. Suppose that (f, D) and (g, D) are function elements, P is a polynomial in two variables:

$$P(z, w) = \sum_{k=0}^{n} \sum_{l=0}^{k} a_{l,k-l} z^k w^{k-l},$$

and $P(f(z), g(z)) = 0$, for all $z \in D$. Suppose (f, D) and (g, D) can be analytically continued along a path γ, to (f, D_1) and (g_1, D_1). Prove that $P(f_1(z), g_1(z)) = 0$, for all $z \in D_1$.