Name: Granwynth Hultaberi

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Explain your work
1. (25 points) Compute the following limits:

(a) \(\lim_{x \to 0} \frac{\arctan(x^2)}{x^2} \).
(b) \(\lim_{x \to 0} \frac{\sin(x^3)}{x \arctan(x^2)} \).

Solution: (a) This is an indeterminate form of type \(\frac{0}{0} \). By L’Hospital’s rule,

\[
\lim_{x \to 0} \frac{\arctan(x^2)}{x^2} = \lim_{x \to 0} \frac{2x}{1+x^4}, \quad \text{if this limit exists}
\]
\[
= \lim_{x \to 0} \frac{1}{1 + x^4}
\]
\[
= 1.
\]

(b) We know that \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \).

This implies

\[
\lim_{x \to 0} \frac{\sin(x^3)}{x^3} = \lim_{t \to 0} \frac{\sin t}{t} = 1.
\]

Therefore, by (a),

\[
\lim_{x \to 0} \frac{\sin(x^3)}{x \arctan(x^2)} = \lim_{x \to 0} \frac{\sin(x^3)}{x^3} \left(\frac{\arctan(x^2)}{x^2} \right)^{-1}
\]
\[
= 1 \cdot 1^{-1}
\]
\[
= 1.
\]
2. **(25 points)** Suppose $f: [0, \infty) \to \mathbb{R}$ is differentiable, $f(0) = 0$, and there exists a constant $M > 0$ such that for all $x > 0$,

$$f'(x) \leq M.$$

Show that $f(x) \leq Mx$, for all $x \geq 0$.

Solution: Let $x > 0$. By the Mean Value Theorem there exists $\xi \in (0, x)$ such that

$$f(x) - f(0) = f'(\xi)(x - 0).$$

Using $f(0) = 0$, we obtain

$$f(x) = f'(\xi)x.$$

Since $f'(\xi) \leq M$ and $x > 0$, it follows that $f(x) \leq Mx$. The inequality is clearly true for $x = 0$. \blacksquare
3. (25 points) Show that for all $x \neq 0$:

$$e^{-x} > 1 - x + \frac{x^2}{2} - \frac{x^3}{6}.$$

Solution: Let $f(x) = e^{-x}$. Since the exponential function is infinitely differentiable, so is f. By the Chain Rule we have $f^{(n)}(x) = (-1)^n e^{-x}$, hence

$$f^{(n)}(0) = (-1)^n.$$

Thus we can apply the third-order Taylor’s theorem at 0 to f. For $x \neq 0$ this yields

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{e^{-\xi} x^4}{4!},$$

for some ξ between 0 and x. Since

$$\frac{e^{-\xi}}{4!} x^4 > 0,$$

it follows that

$$e^{-x} > 1 - x + \frac{x^2}{2} - \frac{x^3}{6},$$

as claimed. ■
4. (25 points) Suppose $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable, $f(0) = 0$ and for all $n = 1, 2, \ldots,$

$$f\left(\frac{1}{n}\right) = 0.$$

(a) Show that $f'(0) = 0$.

(b) Show that there exists a positive decreasing sequence (x_n) converging to zero such that $f'(x_n) = 0$. [Hint: Look at f on $\left[\frac{1}{n+1}, \frac{1}{n}\right]$ for each n.]

(c) Show that $f''(0) = 0$.

Solution: (a) Since f is differentiable at 0, we have

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{n \to \infty} \frac{f\left(\frac{1}{n}\right)}{\frac{1}{n}} = \lim_{n \to \infty} 0 = 0.$$

(*) follows from the sequential characterization of limits.

(b) Let us apply Rolle’s theorem to f on $\left[\frac{1}{n+1}, \frac{1}{n}\right]$ for each n. This is legal, since f is differentiable on \mathbb{R} and equals zero at $1/(n+1)$ and $1/n$. For each n we obtain a point $x_n \in \left(\frac{1}{n+1}, \frac{1}{n}\right)$ such that $f'(x_n) = 0$. Since

$$x_{n+1} < \frac{1}{n+1} < x_n,$$

the sequence is decreasing and converges to zero (by the Squeeze Theorem).

(c) Since f' is differentiable and $f'(0) = 0$, we have:

$$f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = \lim_{n \to \infty} \frac{f'(x_n)}{x_n} = \lim_{n \to \infty} 0 = 0.$$

(○) again follows from the sequential characterization of limits. ■