1. (hard) Describe the set S of limit points of all convergent subsequences of the sequence $(\sin n)$. (Observe that $S \subseteq [0, 1]$ and S is non-empty, by the Bolzano-Weierstrass theorem.)

2. If

 $C_0 + \frac{C_1}{2} + \cdots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0,$

 where C_0, C_1, \ldots, C_n are real constants, prove that the equation

 $C_0 + C_1x + \cdots + C_{n-1}x^{n-1} + C_nx^n = 0$

 has at least one real root between 0 and 1.

3. We call p a **fixed point** of $f : \mathbb{R} \to \mathbb{R}$ if $f(p) = p$.

 (a) If f is differentiable and $f'(t) \neq 1$ for every real t, prove that f has at most one fixed point.

 (b) Suppose there is a constant $\lambda \in (0, 1)$ such that $|f'(t)| \leq \lambda$, for all $t \in \mathbb{R}$. Let x_0

 be arbitrary and define a sequence (x_n) by

 $x_{n+1} = f(x_n)$.

 Show that (x_n) converges and that its limit is the unique fixed point of f.

4. Find an example of a function f such that the limit

 $\lim_{h \to 0} \frac{f(x + h) - 2f(x) + f(x - h)}{h^2}$

 exists but $f''(x)$ doesn’t. (Recall it was/will be proved in class that if f is twice

 differentiable, then $f''(x)$ equals this limit.)

5. Suppose that $f : [0, 1] \to \mathbb{R}$ has a continuous derivative on $[0, 1]$ and $f(0) = 0$. Show

 that

 $\max_{0 \leq x \leq 1} |f(x)| \leq \left(\int_0^1 |f'(t)|^2 \, dt \right)^{1/2}.$

Date: March 18, 2006.