Sec. 5.2, ex. 7: Let \(f : [0, 1] \to \mathbb{R} \) be defined by
\[
f(x) = \begin{cases}
1, & \text{if } x \in [0, 1] \cap \mathbb{Q} \\
-1, & \text{if } x \in [0, 1] \setminus \mathbb{Q}.
\end{cases}
\]
Then \(|f| = 1\) is clearly continuous. Let us show that \(f \) is discontinuous at every point of \([0, 1]\).
If \(x \in [0, 1] \) is rational, let \((x_n)\) be a sequence of irrationals in \([0, 1]\) converging to \(x\). Such a sequence exists because the set of irrational numbers is dense in \(\mathbb{R}\). Then
\[
\lim_{n \to \infty} f(x_n) = -1 \neq 1 = f(x).
\]
By the characterization of continuity via sequences, it follows that \(f \) is discontinuous at \(x\).
If \(y \) is irrational, let \((y_n)\) be a sequence of rational numbers converging to \(y\). Such a sequence exists because the set of rational numbers is dense in \(\mathbb{R}\). Then
\[
\lim_{n \to \infty} f(y_n) = 1 \neq -1 = f(y).
\]
Therefore, \(f \) is discontinuous at \(y\), hence at every point of \([0, 1]\). \(\square\)

5.3, ex. 6: Let
\[
g(x) = f(x) - f \left(x + \frac{1}{2} \right).
\]
It suffices to show that \(g(c) = 0 \), for some \(0 \leq c \leq 1/2 \).
Since \(f \) is continuous, so is \(x \mapsto f \left(x + \frac{1}{2} \right) \), as the composition of two continuous functions.
It follows that \(g \) is continuous on its domain \([0, \frac{1}{2}]\). Furthermore, \(g(0) = f(0) - f(1/2) \) and
\[
g \left(\frac{1}{2} \right) = f \left(\frac{1}{2} \right) - f(1) = f \left(\frac{1}{2} \right) - f(0).
\]
If \(g(0) = 0 \), then \(f(0) = f(1/2) \), so we can take \(c = 0 \). Otherwise, \(g(0) \neq 0 \), so \(g(0) \) and \(g(1/2) \) are of opposite sign. By the Intermediate Value Theorem (IVT), it follows that there exists \(c \in (0, 1/2) \) such that \(g(c) = 0 \). \(\square\)

5.3, ex. 17: Suppose \(f \) is not constant. Then it takes at least two distinct values, say \(u < v \).
Since \(f \) is continuous, by the Intermediate Value Theorem, every number in \((u, v)\) is a value of \(f \). But every open interval \((u, v)\) contains both rational and irrational numbers, contradicting the assumption that \(f \) takes only rational or only irrational values. \(\square\)

Sec. 6.1, ex. 4: By definition of \(f \), we have
\[
0 \leq |f(x)| \leq x^2,
\]
for all \(x \in \mathbb{R} \). Therefore,
\[
0 \leq \left| \frac{f(x)}{x} \right| \leq |x|,
\]
for all \(x \neq 0 \). By the Squeeze Theorem, \(|f(x)/x| \to 0 \), as \(x \to 0 \) and therefore, \(f(x)/x = |f(x) - f(0)|/(x - 0) \to 0 \). Thus \(f \) is differentiable at \(0 \) and \(f'(0) = 0 \). \(\square\)
Remark: It is sufficient to show that \(f(x)/x \to 0 \), as \(Q \in x \to 0 \) and \(Q \notin x \to 0 \) separately, but you need to prove the sufficiency.

Sec. 6.1, ex. 13: Suppose first that \(f \) is differentiable at \(c \). By definition, the limit
\[
\lim_{h \to 0} \frac{f(c + h) - f(c)}{h} \tag{1}
\]
equals and equals \(f'(c) \). By the sequential characterization of limits, \(f'(c) \) equals the limit in (1) along any sequence \((h_n) \) such that \(h_n \to 0 \), as \(n \to \infty \). Taking \(h_n = 1/n \) gives the desired conclusion.

To see that the existence of the limit of \(n[f(c + 1/n) - f(c)] \) does not guarantee the existence of \(f'(c) \), take
\[
f(x) = \begin{cases}
 x \sin \frac{2\pi}{x}, & \text{if } x \neq 0 \\
 0, & \text{if } x = 0.
\end{cases}
\]
Then the limit of
\[
n[f(1/n) - f(0)] = \sin 2n\pi = 0
\]
is 0, yet \(f \) is not differentiable at \(c = 0 \), since
\[
\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{2\pi}{x}
\]
does not exist. \(\square \)

Sec. 6.1, ex. 16: Denote by \(f \) the restriction of tangent to the interval \((-\pi/2, \pi/2)\). Observe that \(f(-\pi/2, \pi/2) = \mathbb{R} \), since the limits of \(f \) at the endpoints are \(-\infty\) and \(+\infty\). Furthermore, \(f \) is differentiable and
\[
f'(x) = \frac{1}{\cos^2 x} > 0.
\]
Therefore, \(f : (-\pi/2, \pi/2) \to \mathbb{R} \) has a differentiable inverse, \(f^{-1} = \arctan : \mathbb{R} \to (-\pi/2, \pi/2) \), whose derivative is
\[
(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{\frac{1}{\cos^2 x}} = \cos^2 x,
\]
where \(x = f^{-1}(y) \), i.e., \(y = \tan x \). Using \(\cos^2 x + \sin^2 x = 1 \), we obtain
\[
\cos^2 x = \frac{\cos^2 x}{1} = \frac{\cos^2 x}{\cos^2 x + \sin^2 x} = \frac{1}{1 + \tan^2 x} = \frac{1}{1 + y^2}. \quad \square
\]

Sec. 6.2, ex. 4: Taking the derivative of
\[
f(x) = \sum_{i=1}^{n} (a_i - x)^2 = \sum_{i=1}^{n} (x - a_i)^2,
\]
we obtain, for any \(x \in \mathbb{R} \),
\[
f'(x) = \sum_{i=1}^{n} 2(x - a_i).
\]
Solving \(f'(x) = 0 \), we obtain the only critical point of \(f \)
\[
c = \frac{1}{n} \sum_{i=1}^{n} a_i.
\]
Since \(f'(x) = 2n(x - c) \), observe that
\[
f'(x) \begin{cases} < 0 & \text{if } x < c \\ > 0 & \text{if } x > c. \end{cases} \tag{2}
\]
By the First Derivative Test, \(f \) has a minimum at 0. The minimum is absolute (or global) since by (2) \(f \) is strictly decreasing on \((-\infty, c] \) and strictly increasing on \([c, \infty)\). Since \(f \) has no other critical points, the Interior Extremum Theorem implies that \(c \) is the unique extremum point of \(f \).

\[\square \]

Sec. 6.2, ex. 16: (a) Let \(h > 0 \) be fixed. By the Mean Value Theorem, there exists a point \(c_\varepsilon \in (x, x + h) \) such that \(f(x + h) - f(x) = f'(c_\varepsilon)h \). Observe that \(c_\varepsilon \to \infty \), as \(x \to \infty \). Therefore,

\[
\lim_{x \to \infty} \frac{f(x + h) - f(x)}{h} = \lim_{x \to \infty} f'(c_\varepsilon) = b.
\]

(b) Suppose that \(f(x) \to a \), as \(x \to \infty \). Then using (a), we have:

\[
b = \lim_{x \to \infty} \frac{f(x + h) - f(x)}{h} = \lim_{x \to \infty} \frac{f(x + h) - f(x)}{h} = \frac{a - a}{h} = 0.
\]

(c) First assume \(b > 0 \). Let \(\varepsilon > 0 \) be arbitrary. Without loss of generality, we can assume that \(\varepsilon < 1 \) and \(\varepsilon < 2b \) (since, after all, we only care for very small values of \(\varepsilon \)). Since \(f'(x) \to b \), as \(x \to \infty \), there exists \(a > 0 \) such that \(|f'(x) - b| < \varepsilon/2 \), for all \(x \geq a \). Put \(K = \max \left(\frac{a}{\varepsilon}, \frac{2f(a)}{\varepsilon} \right) \).

By the Mean Value Theorem, for every \(x > K(> a) \), there exists a number \(\xi \in (a, x) \) such that \(f(x) - f(a) = f'(\xi)(x - a) \). Therefore,

\[
f(x) = \frac{f(x) - f(a)}{x} + f(a)
= f'(\xi)\left(1 - \frac{a}{x}\right) + f(a).
\]

Observe that \(b - \varepsilon/2 < f'(\xi) < b + \varepsilon/2 \). \(1 - \varepsilon < 1 - \frac{a}{x} < 1 \), and \(-\varepsilon/2 < f(a)/x < \varepsilon/2 \). Using these estimates, we obtain two inequalities:

\[
\frac{f(x)}{x} < \left(b + \frac{\varepsilon}{2}\right) \cdot 1 + \frac{\varepsilon}{2} = b + \varepsilon,
\]

and

\[
\frac{f(x)}{x} > \left(b - \frac{\varepsilon}{2}\right) (1 - \varepsilon) - \frac{\varepsilon}{2} = b - \varepsilon (1 + b) + \frac{\varepsilon^2}{2} > b - \varepsilon (1 + b).
\]

In other words, for all \(x > K \), we have

\[
b - \varepsilon (1 + b) < \frac{f(x)}{x} < b + \varepsilon.
\]

Since \(\varepsilon \) can be arbitrarily small, it follows that \(f(x)/x \to b \), as \(x \to \infty \). If \(b < 0 \) the argument is symmetric, and for \(b = 0 \) it is similar.

\[\square \]

Remark: You may complain that we didn’t show that \(f(x)/x \) was greater than \(b - \varepsilon \), only \(b - \varepsilon (1 + b) \). However, it is not necessary to get exactly \(\varepsilon \) on both sides. Here’s a useful lemma:

Lemma. Let \(f : I \to \mathbb{R} \) and \(a \in I \). Suppose that there exist functions \(u, v \) continuous at 0, with \(u(0) = v(0) = 0 \), such that for every \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that

\[
L - u(\varepsilon) < f(x) < L + v(\varepsilon),
\]

for all \(x \in I \), \(0 < |x - a| < \delta \). Then \(f(x) \to L \), as \(x \to a \).
If \(u(x) = v(x) = x \), we get our usual definition of the limit at \(f \) at \(a \). Proving this lemma is a good exercise in \(\varepsilon-\delta \) analysis.

Sec. 6.2, ex. 20: (a) Applying the Mean Value Theorem to \(f \) on \([0, 1]\), we obtain a point \(c_1 \in (0, 1) \) such that \(f(1) - f(0) = f'(c_1)(1 - 0) \), i.e., \(f'(c_1) = 1 \).

(b) Applying Rolle’s Theorem to \(f \) on \([1, 2]\) yields a point \(c_2 \in (1, 2) \) such that \(f'(c_2) = 0 \).

(c) Since \(f'(c_1) = 1 \), \(f'(c_2) = 0 \), and \(0 < \frac{1}{3} < 1 \), by Darboux’s theorem there exists a point \(c \) between \(c_1 \) and \(c_2 \) such \(f'(c) = 1/3 \). \(\square \)