Sec. 11.2, ex. 1: Let \(U_n = (1 + \frac{1}{n}, 3) \), \(n \geq 1 \). Then \(\mathcal{U} = \{ U_n \} \) is an open cover of \((1, 2] \). We claim that \(\mathcal{U} \) has no finite subcover. Suppose that it did and denote it by \(\{ U_{n_1}, \ldots, U_{n_k} \} \). Let \(n = \max\{ n_1, \ldots, n_k \} \). Then

\[U_{n_1} \cup \ldots \cup U_{n_k} = \left(1 + \frac{1}{n}, 3 \right) = U_n, \]

which clearly does not cover \((1, 2] \) – a contradiction. Therefore, \(\mathcal{U} \) has no finite subcover, which means that \((1, 2] \) is not compact. \(\square \)

Sec. 11.2, ex. 3: Let \(V_n = (\frac{1}{n+1}, 2) \), \(n \geq 1 \). Since \(V_n \) contains \(1, \frac{1}{2}, \ldots, \frac{1}{n} \), \(\mathcal{V} = \{ V_n \} \) is an open cover of the set \(1/\mathbb{N} = \{ 1/n : n \in \mathbb{N} \} \). We claim that \(\mathcal{V} \) has no finite subcover. Suppose this were not true. Denote a finite subcover of \(\mathcal{V} \) by \(\{ V_{n_1}, \ldots, V_{n_k} \} \). Let \(n = \max\{ n_1, \ldots, n_k \} \). Then

\[V_{n_1} \cup \ldots \cup V_{n_k} = \left(\frac{1}{n}, 2 \right) = V_n, \]

which clearly does not cover \(1/\mathbb{N} \) – a contradiction. Therefore, \(\mathcal{V} \) has no finite subcover, so \(1/\mathbb{N} \) is not compact. \(\square \)

Sec. 11.2, ex. 8: Let \(\{ K_i : i \in I \} \) be an arbitrary collection of compact subsets of \(\mathbb{R} \) and set

\[K = \bigcap_{i \in I} K_i. \]

By the Heine-Borel theorem, each \(K_i \) is closed and bounded. The intersection of an arbitrary collection of closed sets is closed, so \(K \) is closed. Since \(K \subseteq K_1 \) and \(K_1 \) is bounded, it follows that \(K \) is bounded. Therefore, \(K \) is both closed and bounded, hence compact, by Heine-Borel. \(\square \)

Sec. 11.2, ex. 10: Since \(K \) is compact, it is bounded, by Heine-Borel. Therefore, \(K \) has an infimum and a supremum, and they are finite, since \(K \neq \emptyset \) (recall that \(\inf \emptyset = +\infty \) and \(\sup \emptyset = -\infty \)). Let \(a = \inf K \) and \(b = \sup K \). By one of the characterizations of the infimum, in addition to \(a \) being a lower bound of \(K \), there exists a sequence \(\langle a_n \rangle \) in \(K \) such that \(a_n \to a \). If this sequence is eventually constant – i.e., if \(a_N = a_{N+1} = a_{N+2} \cdots \), starting from some \(N \) – then \(a = a_N \) is clearly in \(K \). Otherwise, \(a \) is a cluster point of \(K \). Since \(K \) is compact, it is closed, and it therefore contains all of its cluster points. Thus \(a \in K \). The proof that \(b \in K \) is analogous (or one can also use the fact \(\sup K = -\inf(-K) \)). \(\square \)

Sec. 11.3, ex. 5: Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is continuous and let \(\alpha \in \mathbb{R} \) be arbitrary. We have

\[U_\alpha = \{ x \in \mathbb{R} : f(x) < \alpha \} = f^{-1}(\langle -\infty, \alpha \rangle). \]

Since \((-\infty, \alpha) \) is open (it’s an open interval), it follows that \(U_\alpha \) is open, as the preimage of an open set by a continuous function. \(\square \)

Sec. 11.3, ex. 10: Let

\[F = \{ x \in I : f(x) = g(x) \}. \]
Let x be an arbitrary cluster point of F. Then there exists a sequence (x_n) in F such that $x_n \to x$, as $n \to \infty$. Since $x_n \in F$, for every $n \in \mathbb{N}$, we have

$$f(x_n) = g(x_n).$$

Letting $n \to \infty$ and using the sequential characterization of continuity of f and g, we obtain $f(x_n) \to f(x)$ and $g(x_n) \to g(x)$. This implies that $f(x) = g(x)$, so $x \in F$, by definition of F. Since F contains all of its cluster points, it is closed. \qed