Name: Granwyth Hulatberi

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>XC</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
</tr>
</tbody>
</table>

Explain your work
1. (20 points) Let \(f : \mathbb{R} \to \mathbb{R} \) be a function and let \((a_n)\) and \((b_n)\) be sequences of numbers converging to zero. Assume \(a_n \neq b_n\) for all \(n \in \mathbb{N}\) and define the difference quotients

\[
D_n = \frac{f(b_n) - f(a_n)}{b_n - a_n}.
\]

Prove that \(D_n \to f'(0)\), as \(n \to \infty\), under each of the following conditions (separately):

(a) If \(f\) is continuously differentiable (i.e., \(f'\) exists and is continuous).

(b) If \(f\) is differentiable at zero and \(a_n < 0 < b_n\) for all \(n \in \mathbb{N}\).

(Hint: You may – or may not – want to use the following basic fact: if \(f\) is differentiable at \(a\), then \(f(x) = f(a) + (x-a)f'(a) + \rho(x)\), where \(\rho(x)/(x-a) \to 0\), as \(x \to a\).)

Solution: (a) If \(f\) is \(C^1\), then by the Mean Value Theorem for each \(n\) there exists a number \(c_n\) between \(a_n\) and \(b_n\) such that

\[
f(b_n) - (a_n) = f'(c_n)(b_n - a_n).
\]

Since both \(a_n\) and \(b_n\) converge to zero, so does \(c_n\). Therefore,

\[
D_n = f'(c_n) \to f'(0),
\]

as \(n \to \infty\), by continuity of \(f'\).

(b) By definition of differentiability (and by the Hint), for each \(n \in \mathbb{N}\) there exist \(u_n = \rho(a_n), v_n = \rho(b_n)\) such that

\[
f(a_n) = f(0) + a_nf'(0) + u_n
\]

\[
f(b_n) = f(0) + b_nf'(0) + v_n,
\]

and satisfying \(|u_n/a_n| \to 0\) and \(|v_n/b_n| \to 0\). Therefore,

\[
D_n = f'(0) + \frac{v_n - u_n}{b_n - a_n}.
\]

Since \(a_n < 0 < b_n\), we have \(b_n - a_n > b_n\) and \(b_n - a_n > |a_n|\). This yields

\[
0 \leq \frac{|v_n|}{b_n - a_n} \leq \frac{|v_n|}{b_n} \to 0 \quad \text{and} \quad 0 \leq \frac{|u_n|}{b_n - a_n} \leq \frac{|u_n|}{a_n} \to 0.
\]

By the squeeze theorem,

\[
\frac{v_n - u_n}{b_n - a_n} \to 0,
\]

as \(n \to \infty\), hence \(D_n \to f'(0)\).
2. (20 points) Consider
\[f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^\alpha x}, \quad x \geq 0. \]

(a) For what values of \(x \) and the parameter \(\alpha \) does the series converge absolutely?
(b) On what intervals does it converge uniformly?
(c) Is \(f \) continuous wherever the series converges?

Solution: (a) First note that the terms of the series are positive, so the series converges iff it converges absolutely.
If \(x > 0 \), then
\[\frac{1}{1 + n^\alpha x} \leq \frac{1}{n^\alpha}. \]
The series \(\sum n^{-\alpha} \) converges for \(\alpha > 1 \), so the original series converges, by the comparison test. It does not converge for \(x = 0 \) or \(\alpha \leq 0 \), since then \(1/(1 + n^\alpha x) \) does not converge to zero.
The remaining case to consider is \(0 < \alpha \leq 1 \) and \(x > 0 \). Then, since \(1 + n^\alpha x \leq (n+1)^\alpha x \), for large \(n \), we have
\[\frac{1}{1 + n^\alpha x} \geq \frac{1}{(n+1)^\alpha x}. \]
By comparison test, the series diverges, since \(\sum (n+1)^{-\alpha} \) diverges for \(\alpha \leq 1 \).
Therefore, the series converges iff \(x > 0 \) and \(\alpha > 1 \).

(b) Let \(b > 0 \) be arbitrary but fixed. If \(x \geq b \), then
\[\frac{1}{1 + n^\alpha x} \leq \frac{1}{bn^\alpha}. \]
Since for \(\alpha > 1 \), the series \(\sum n^{-\alpha} \) converges (absolutely), the given series converges uniformly on every interval \([b, \infty)\), by the Weierstrass M-test.
However, note that the series does not converge uniformly on \((0, \infty)\), since the sequence of functions \((1 + n^\alpha x)^{-1} \) doesn’t uniformly converge to zero on that set.

(c) For \(\alpha > 1 \), the given series converges uniformly on every interval of the form \([b, \infty)\), for \(b > 0 \). Since each function \(x \mapsto (1 + n^\alpha x)^{-1} \) is continuous on \([b, \infty)\), it follows that \(f \) is continuous on each interval \([b, \infty)\). Therefore, it is continuous on their union, which is \((0, \infty)\). This means that \(f \) is continuous wherever (and whenever) the series converges.
3. **(20 points)** Let $f : [0, 1] \to \mathbb{R}$ be a Riemann integrable function. Show that:

$$\lim_{n \to \infty} \int_0^1 x^n f(x) \, dx = 0.$$

Solution: Let $g_n(x) = x^n f(x)$. Then

$$g(x) = \lim_{n \to \infty} g_n(x) = \begin{cases} 0 & \text{if } 0 \leq x < 1 \\ f(1) & \text{if } x = 1. \end{cases}$$

Since g is bounded and discontinuous at at most one point ($x = 1$), g is Riemann integrable, by the Riemann-Lebesgue criterion. Also, its integral equals zero. By the same criterion, we have:

(a) g_n is Riemann integrable, since x^n is continuous and $f \in \mathcal{R}[0, 1]$,

(b) f is bounded, say, $|f(x)| \leq M$, for all $0 \leq x \leq 1$.

It follows that

$$|g_n(x)| \leq M x^n \leq M,$$

for all $x \in [0, 1]$ and all $n \in \mathbb{N}$, i.e., the sequence (g_n) is uniformly bounded. By the Bounded Convergence Theorem,

$$\lim_{n \to \infty} \int_0^1 g_n(x) \, dx = \int_0^1 g(x) \, dx = 0.$$
4. **(20 + 5 points)** A metric (or distance) on a set M is a function $d : M \times M \to [0, \infty)$ with the following properties: for all $x, y, z \in M$,

- **(D1)** $d(x, y) = 0$ if and only if $x = y$;
- **(D2)** $d(y, x) = d(x, y)$;
- **(D3)** $d(x, z) \leq d(x, y) + d(y, z)$.

A metric space (M, d) is a set M equipped with a metric d. A sequence (x_n) converges in (M, d) if there exists $x \in M$ such that $d(x_n, x) \to 0$, as $n \to \infty$. A sequence (x_n) is called Cauchy in (M, d) if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $m, n > N$, $d(x_m, x_n) < \varepsilon$. A metric space (M, d) is called complete if every Cauchy sequence in (M, d) converges to a limit in M. See 11.4 in Bartle and Sherbert.

For two functions $f, g : [0, 1] \to \mathbb{R}$, define

$$d_1(f, g) = \int_0^1 |f(t) - g(t)| \, dt \quad \text{and} \quad d_\infty(f, g) = \sup_{0 \leq x \leq 1} |f(t) - g(t)|.$$

(a) Show that d_1 is a metric on the space $C[0,1]$ of continuous functions defined on $[0,1]$.

(b) Show that d_1 is not a metric on the space $\mathcal{R}[0,1]$ of Riemann integrable functions.

(c) Let $f_n(t) = t^n$ ($0 \leq t \leq 1$, $n \in \mathbb{N}$). Show that (f_n) is a Cauchy sequence in $(C[0,1], d_1)$ but that it does not converge to a limit in $C[0,1]$. Therefore, the metric space $(C[0,1], d_1)$ is not complete. (Observe that $(C[0,1], d_\infty)$ is complete by the Cauchy Criterion for Uniform Convergence, 8.1.10).

(d) **(5 extra credit points)** Find a sequence of Riemann integrable functions on $[0,1]$ that is Cauchy with respect to d_1 but which does not converge to a Riemann integrable function.

Solution: (a) Suppose $d_1(f, g) = 0$ for some $f, g \in C[0,1]$. Then $\int_0^1 |f - g| = 0$. By exercise 10 from 7.2 (see Homework 3 solutions), $f = g$. (D2) is clear. (D3) follows by integrating the triangle inequality for absolute value: $|f - h| \leq |f - g| + |g - h|$ and using the monotonicity of the Riemann integral $u \leq v \Rightarrow \int_a^b u \leq \int_a^b v$.

(b) Let f be the zero function on $[0,1]$ and let g equal zero everywhere but at zero, where we set $g(0) = 1$. By the Riemann-Lebesgue criterion, $f, g \in \mathcal{R}[0,1]$. Since f and g differ at only one point,

$$d_1(f, g) = \int_0^1 |f - g| = \int_0^1 0 = 0,$$

even though $f \neq g$. Therefore, (D1) is violated.
(c) Let \(m > n \) be arbitrary. Then \(t^m \leq t^n \), for \(t \in [0, 1] \), and

\[
d_1(f_m, f_n) = \int_0^1 (t^n - t^m) \, dt = \frac{1}{n+1} - \frac{1}{m+1} \leq \frac{1}{n+1} \to 0,
\]
as \(n \to \infty \). Therefore, \((f_n)\) is a Cauchy sequence in \((C[0, 1], d_1)\). Since

\[
\lim_{n \to \infty} f_n(t) = \begin{cases} 0, & 0 \leq t < 1 \\ 1, & t = 1 \end{cases}
\]
is discontinuous, \((f_n)\) diverges in \(C[0, 1]\).

(d) Since \(\mathbb{Q} \cap [0, 1] \) is countable, it can be written as \(\{r_1, r_2, \ldots\} \). Define \(f_n \) to be the characteristic function of \(\{r_1, \ldots, r_n\} \). Each \(f_n \) is bounded and zero (hence continuous) except at \(n \) points, hence Riemann integrable with integral zero. Therefore,

\[
d_1(f_m, f_n) = \int_0^1 |f_m - f_n| = 0,
\]
for all \(m, n \in \mathbb{N} \), so the sequence \((f_n)\) is Cauchy with respect to \(d_1 \). However, the limit of \(f_n \) is the Dirichlet function (the characteristic function of \(\mathbb{Q} \cap [0, 1] \)), which is not Riemann integrable.
5. (20 points) Suppose that \(f : [a, b] \to \mathbb{R} \) is continuously differentiable, \(f(a) = f(b) = 0 \) and
\[
\int_a^b f(x)^2 \, dx = 1.
\]
Prove that
\[
\int_a^b x f(x) f'(x) \, dx = -\frac{1}{2}.
\]

Proof: This one was easy.

Solution 1: We will use the integration by parts formula
\[
\int_a^b u \, dv = uv\big|_a^b - \int_a^b v \, du,
\]
with \(u = xf(x) \) and \(dv = f'(x) \, dx \). Then \(du = f(x) + xf'(x) \) and \(v = f(x) \), so
\[
I = \int_a^b x f(x) f'(x) \, dx
= xf(x)f'(x)|_a^b - \int_a^b f(x)[f(x) + xf'(x)] \, dx
= -\int_a^b f(x)^2 \, dx - \int_a^b xf(x)f'(x) \, dx
= -1 - I.
\]
where we used the fact that \(f \) vanishes at \(a \) and \(b \). Solving the equation \(I = -1 - I \), we obtain
\[
I = -\frac{1}{2}.
\]

Solution 2: Integration by parts with \(u = x \) and \(dv = f(x)f'(x) \, dx \) is even easier.
6. (20 + 15 points) Assume $h : \mathbb{R} \to \mathbb{R}$ is differentiable and

$$1 \leq h'(x) \leq 2,$$

for all $x \in \mathbb{R}$.

(a) Show that h is a diffeomorphism, i.e., h is a bijection and its inverse h^{-1} is differentiable.

(b) Show that h maps F_σ-sets to F_σ-sets. That is, for every F_σ-set $A \subset \mathbb{R}$, prove that $h(A)$ is an F_σ-set.

(c) (5 extra credit points) Show that $E \subset \mathbb{R}$ is measurable if and only if $h(E)$ is measurable.

(d) (10 extra credit points) Show that for every measurable set E,

$$m(h(E)) \leq 2m(E).$$

Solution: (a) Since $h' \geq 1 > 0$, h is strictly increasing, hence 1–1. Integrating $1 \leq h' \leq 2$, we obtain

$$x + a \leq h(x) \leq 2x + a,$$

where $a = h(0)$. This implies $h(x) \to \pm \infty$, as $x \to \pm \infty$, so h is also onto. Therefore, h is a bijection. Since h' is never zero, h^{-1} is differentiable everywhere, by the theorem on differentiability of the inverse function (and $(h^{-1})'(y) = 1/h'(x)$, where $y = h(x)$). Thus $h : \mathbb{R} \to \mathbb{R}$ is a diffeomorphism.

(b) First let us show that h takes closed sets to closed sets. Assume $F \subset \mathbb{R}$ is closed. Then its complement F^c is open, so $h(F^c) = (h^{-1})^{-1}(F^c)$ is open, by continuity of h^{-1} (the pre-image of an open set is open). But $h(F^c) = h(F)^c$, so $h(F)^c$ is open, implying that $h(F)$ is closed. This proves our assertion.

Now let A be an F_σ-set. Then A can be written as

$$A = \bigcup_{n=1}^\infty F_n,$$

where F_n is closed for each n. Therefore, $h(F_n)$ is closed, so

$$h(A) = \bigcup_{n=1}^\infty h(F_n)$$

is an F_σ-set.

(c) Assume E is measurable. Then by the regularity of Lebesgue measure, $E = A \cup Z$, where A is a G_δ- or an F_σ-set and Z is a zero set. It follows from part (d) (or from
problem 1 on the last year’s final exam) that \(h \) takes zero sets to zero sets, so \(h(Z) \) is a zero set. A completely analogous argument to the one in (b) shows that \(h \) takes \(G_δ \)-sets to \(G_δ \)-sets. Thus \(h(A) \) is a \(G_δ \) or an \(F_σ \)-set. Therefore, \(h(E) = h(A) \cup h(Z) \) is measurable as a union of two measurable sets.

(d) We are led by the following principle: if \(h \) stretches/shrinks intervals by a factor of at most \(λ \), then it stretches/shrinks any measurable set by a factor of at most \(λ \).

Formally, recall that for a measurable set \(E \), \(m(E) \) is just the outer measure \(m^*(E) \). If \(E \) is unbounded, then so is \(h(E) \), in which case they both have infinite measure, and \(∞ ≤ 2∞ \).

So assume that \(E \) is bounded and hence \(m(E) < ∞ \). Let \(ε > 0 \) be arbitrary. Then there exists a covering \(\{I_n\} \) of \(E \) by open intervals such that its total length satisfies

\[
\sum_{n=1}^{∞} |I_n| < m(E) + \frac{ε}{2}.
\]

Since \(h \) is a diffeomorphism, \(J_n = h(I_n) \) is an open interval, for each \(n \). Furthermore,

\[
h(E) \subset h \left(\bigcup_{n} I_n \right) = \bigcup_{n} h(I_n) = \bigcup_{n} J_n,
\]

so \(\{J_n\} \) is a covering of \(h(E) \). Let \(I_n = (a_n, b_n) \). By the Mean Value Theorem,

\[
|J_n| = h(b_n) - h(a_n) = h'(c_n)(b_n - a_n) \leq 2 |I_n|
\]

so \(∑ |J_n| \leq 2 ∑ |I_n| \). By the definition of outer measure,

\[
m(h(E)) \leq ∑_{n=1}^{∞} |J_n| \leq 2 ∑_{n=1}^{∞} |I_n| < 2m(E) + ε.
\]

Since \(ε > 0 \) was arbitrary, \(m(h(E)) \leq 2m(E) \).
...a measurably excellent summer break!