Exercise 2.2.6: Let x be a fixed point of a map f on the real line such that $|f'(x)| = 1$ and $f''(x) \neq 0$. Show that arbitrarily close to x there is a point y such that the iterates of y do not converge to x.

Proof: Suppose for instance that $f'(x) = 1$ and $f''(x) > 0$. By the Taylor formula,

$$f(y) = f(x) + f'(x)(y - x) + f''(x)(y - x)^2 + R(y)$$

where $R(y)/(y - x)^2 \to 0$, as $y \to x$. Therefore, there exists a neighborhood U of x such that for every $y \in U$, $|R(y)| < f''(x)(y - x)^2 / 2$. It follows that for all $y \in U$, we have $f(y) > y$, so if $y > x$, then $f(y) > y > x$. By induction, as long as $f^n(y) \in U$, we have $f^{n+1}(y) > f^n(y)$, i.e., the iterates of y move away from x and therefore cannot converge to x.

The other cases can be dealt with analogously. The problem can also be solved graphically using cobweb diagrams, but this solution is not rigorous.

Problem 2.2.13: Suppose that I is a closed bounded interval and $f : I \to I$ is such that $d(f(x), f(y)) < d(x, y)$ for any $x \neq y$ (this is weaker than the assumption of the Contraction Principle). Prove that f has a unique fixed point $x_0 \in I$ and that $\lim_{n \to \infty} f^n(x) = x_0$ for any $x \in I$.

Proof: The function f is Lipschitz, hence continuous and continuous maps of I have a fixed point. Alternatively, let $m = \inf\{|f(x) - x| : x \in I\}$. Since f is continuous and I is compact, m is achieved at some point $x_0 \in I$: $m = |f(x_0) - x_0|$. Suppose that $m > 0$, i.e., $f(x_0) \neq x_0$ and let $y_0 = f(x_0)$. Then

$$|f(y_0) - f(x_0)| = |y_0 - x_0| = m,$$

which is a contradiction. Therefore, $f(x_0) = x_0$, that is, x_0 is a fixed point of f. If x is another fixed point of f, then necessarily $x = x_0$, otherwise

$$|x - x_0| = |f(x) - f(x_0)| < |x - x_0|,$$

which is clearly impossible.

Let $x \in I$ be arbitrary and define $x_n = f^n(x)$. Denote by A the set of all accumulation (or cluster) points of the sequence (x_n). This means that $y \in A$ if there exists a subsequence of (x_n) converging to y.

Since

$$|x_{n+1} - x_0| = |f(x_n) - f(x_0)| < |x_n - x_0|,$$

the sequence $|x_n - x_0|$ is strictly decreasing and bounded below, hence convergent, say to δ. Therefore, A is contained in the set $\{x_0 - \delta, x_0 + \delta\}$. If $\delta = 0$, $x_n \to x_0$ and we are done. So suppose $\delta > 0$. Let $y \in A$ be arbitrary. It is not hard to see that $f(y) \in A$, so on one hand $|y - x_0| = \delta$, but on the other hand,

$$|f(y) - x_0| = |f(y) - f(x_0)| < |y - x_0| = \delta,$$

which is a contradiction. Therefore, $\delta = 0$ and $x_n \to x_0$.

\[\square\]
Problem 2.2.14: Show that the assertion of the previous exercise is not valid for $I = \mathbb{R}$ by constructing a map $f : \mathbb{R} \to \mathbb{R}$ such that $d(f(x), f(y)) < d(x, y)$ for $x \neq y$, f has no fixed point, and $d(f^n(x), f^n(y))$ does not converge to zero for some x, y.

Solution: Let $f(x) = \pi + x - \arctan x$. Observe that
\[
0 \leq f'(x) = 1 - \frac{1}{1 + x^2} < 1.
\]
Therefore, for all $x, y \in \mathbb{R}$, $x \neq y$, there exists c between x and y such that $f(x) - f(y) = f'(c)(x - y)$. This implies
\[
|f(x) - f(y)| < |x - y|.
\]
On the other hand, if $f(x) = x$, then $\arctan x = \pi$, which is impossible, so f does not have a fixed point.

Finally, let $x \in \mathbb{R}$ be arbitrary and let $y = f(x)$. Since $f(t) - t = \pi - \arctan t > \pi/2$, it follows that
\[
|f^n(y) - f^n(x)| = |f(f^n(x)) - f^n(x)| > \pi/2,
\]
for all n, so $|f^n(x) - f^n(y)| \not\to 0$, as $n \to \infty$. \qed