Exercise 6.1.1: Suppose that f is an orientation and length-preserving homeomorphism of S^1. Let $F : \mathbb{R} \to \mathbb{R}$ be a lift of f. Then F also preserves length, i.e., F is a rigid motion of \mathbb{R}, so F has to be either a translation of a reflection. Since f is orientation preserving, F is strictly increasing, so it must be a translation, e.g. $F(x) = x + \alpha$. This implies that f is a rotation by α. □

Exercise 6.1.2: Suppose that p is an attracting fixed point for a C^1 diffeomorphism $f : X \to X$, where X is a smooth manifold, or just a nice subset of a Euclidean space (so that “volume” makes sense in it). Let $r > 0$ be sufficiently small so that the ball B_{3r} of radius $3r$ centered at p is contained in the basin of attraction of p (i.e., for every $x \in B_{3r}$, $f^n(x) \to p$, as $n \to \infty$). We claim that there exists $N > 0$ such that $f^N(B_{2r}) \subset B_r$, where B_r is the r-ball at p.

Since p is stable, there exists an open set $W \subset B_{r}$ such that $f^n(W) \subset B_r$, for all $n \geq 0$.

Now consider an arbitrary $x \in B_{2r}$ (the closed 2r-ball). Since $f^n(x) \to p$, there exists $N_x \in \mathbb{N}$ such that for all $n \geq N_x$, $f^n(x) \in W$. Let

$$V_x = f^{-N_x}(W) \cap B_{2r}.$$

Then V_x is an open set in B_{2r} and the collection $\{V_x : x \in B_{2r}\}$ clearly covers B_{2r}. Since B_{2r} is compact, there exists a finite subcover $\{V_{x_1}, \ldots, V_{x_k}\}$ of B_{2r}. Let

$$N = \max(N_{x_1}, \ldots, N_{x_k}).$$

We claim that $f^N(B_{2r}) \subset B_r$. Let $x \in B_{2r}$ be arbitrary. Then $x \in V_{x_i}$, for some $1 \leq i \leq k$, so $f^{N_{x_i}}(x) \in W$. Therefore,

$$f^N(x) = f^{N-N_{x_i}}(f^{N_{x_i}}(x)) \in f^{N-N_{x_i}}(W) \subset B_r,$$

proving the above claim.

It follows that $\text{vol}(f^N(B_{2r})) \leq \text{vol}(B_r) < \text{vol}(B_{2r})$, so f^N is not volume preserving. Therefore, f is not volume preserving (otherwise, f^N would be), as claimed. □

Exercise 6.1.4: The divergence of the vector field is zero, so its flow is area-preserving. Observe that the origin is a center and that all non-trivial orbits are concentric circles centered at the origin. The equations model a non-damped harmonic oscillator. □

Exercise 6.1.5: The divergence is again zero, so the flow preserves area. This is an equation of a non-damped pendulum. □

Exercise 6.1.6: The divergence is -1, so the flow is not area-preserving. □

Exercise 6.1.7: Suppose that p is an attracting fixed point for f. Then there exists a neighborhood U of p (namely, the basin of attraction of p) such that for every $x \in U$, $f^n(x) \to p$,
as \(n \to \infty \), i.e., \(\omega(x) = \{p\} \). This means that for all \(x \in U \setminus \{p\} \), \(x \notin \omega(x) \), i.e., \(x \) is not recurrent. Since the only recurrent point in the open set is \(p \), it follows that the set of recurrent points is not dense. \(\square \)