Exercise 7.2.5: Suppose $f, g : X \to X$ are continuous maps of a compact space X and $h : X \to X$ is a topological conjugacy between f and g ($hf = gh$). Assume f has sensitive dependence on initial conditions with sensitivity constant Δ_f; let us show that g has it too.

Define
\[\Delta_g = \min\{d(h(u), h(v)) : d(u, v) \geq \Delta_f\}. \]

Since X is compact and h is continuous, Δ_g exists and is positive. We claim that Δ_g is a sensitivity constant for g.

Let $y \in X$ and $\epsilon > 0$ be arbitrary. Continuous maps of compact spaces are uniformly continuous, so there exists $\delta > 0$ such that $d(p, x) < \delta$ implies $d(h(p), h(x)) < \epsilon$. Set $x = h^{-1}(y)$. Since f has sensitive dependence, there exists a point p and a natural number N such that $d(p, x) < \delta$ and $d(f^N(x), f^N(p)) \geq \Delta_f$. Let $q = h(p)$; then $d(g, y) < \epsilon$. By definition of Δ_g and the fact that $hf = gh$, it follows that
\[d(g^N(y), g^N(q)) = d(hf^N(x), hf^N(p)) \geq \Delta_g. \]

Therefore, Δ_g is a sensitivity constant for g so g does have sensitive dependence. Thus sensitive dependence is a topological invariant on compact spaces. \qed

Exercise 7.3.1: Let $x \in [0, 1]$ (mod 1). The even E_2-iterates of x are in the left half of the unit interval iff all even digits in the binary expansion of x are zero, i.e., if
\[x = 0.x_10x_30x_5\cdots. \]

The orbit of x is non-periodic iff the sequence $x_1x_3x_5\cdots$ is non-periodic, which is the case, for example, if $0.x_1x_3x_5\cdots$ (base 2) is irrational. So to obtain the desired number x, pick an irrational binary number and insert 0's into all the even binary places. \qed

Exercise 7.3.11: Suppose there exists a homeomorphism $h : [0, 1] \to [0, 1]$ such that $hf_4 = f_\lambda h$, for some $0 < \lambda < 4$. The boundary of $[0, 1]$ has to be mapped to itself by h, so $h(0), h(1) \in \{0, 1\}$. On the other hand, h maps fixed points of f_4 to fixed points of f_λ, so $h(0) = 0$. It follows that $h(1) = 1$. This yields $1 = h(1) = hf_4(1/2) = f_\lambda h(1/2)$, which is a contradiction, since $f_\lambda(x) < 1$, for all x. \qed