Midterm Exam

March 12, 2008

Due on March 19 at 3 PM

Name:

<table>
<thead>
<tr>
<th>Score</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>XC</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Explain your work
1. **(25 points)** Assume that $f : \mathbb{R}^k \to \mathbb{R}^k$ is a C^1 diffeomorphism and p is a periodic point of f of period three. Let $p_i = f^i(p), i = 0, 1, 2$. Show that the matrices

$$
Df^3(p_0), \ Df^3(p_1), \ Df^3(p_2)
$$

have the same spectrum.

(Hint: Use the chain rule.)

Proof:
2. (25 points) Let X be a metric space and let $f : X \to X$ be a homeomorphism. A point $p \in X$ is called a **non-wandering point** of f if for every neighborhood U of p there exists an integer $n > 0$ such that $f^n(U) \cap U$ is non-empty. The set of non-wandering points of f is denoted by $\Omega(f)$.

(a) Show that $\Omega(f)$ is closed.

(b) Show that $\Omega(f)$ is invariant under f.

(c) Find $\Omega(f)$ for an arbitrary circle rotation $f = R_\alpha : S^1 \to S^1$.

Solution:
3. (25 points) Let $f : S^1 \to S^1$ be defined by $f(z) = z^2$.

(a) Show that periodic points of f are dense in S^1.
(b) How many periodic points of period n (for $n = 1, 2, \ldots$) does f have?
(c) What is the degree of f?

(Hint for (a) and (b): Write f in additive notation as a map of $[0, 1]$ and sketch the graph of its iterates.)

Solution:
4. (25 points) Let $f : S^1 \to S^1$ be an orientation preserving homeomorphism with finitely many fixed points. If f has an attracting fixed point, show that it must have a repelling fixed point.

Proof:
Extra credit (20 points) For a diffeomorphism f and a nonzero vector v, the number

$$
\chi(v) = \lim_{n \to \infty} \frac{1}{n} \log \| Df^n(v) \|
$$

is called the **Lyapunov exponent** of v. Compute the Lyapunov exponents of a linear isomorphism (i.e., non-singular matrix) $L : \mathbb{R}^2 \to \mathbb{R}^2$.

Solution: