Math 231A Course Plan

1/27 Introduction

Chapter 1: Measure theory

2/1 Preliminaries (1)
2/3 Exterior measure (2)
2/8 Measurable sets and the Lebesgue measure (3)
2/10 Borel sets and non-measurable set
2/15 No class
2/17 Measurable functions (4)
2/22 Littlewood's three principles (4.3). Brunn-Minkowski inequality (5, no proof).

Chapter 2: Integration theory

2/24 Lebesgue integral (1)
3/1 Lebesgue integral continued
3/3 The space of integrable functions (2)

3/8 Fubini's theorem (3.1)
3/10 Applications of Fubini's theorem (3.2)
3/15 Review and exercises

Chapter 3: Differentiation and integration

3/17 Differentiation of the integral. The Hardy-L. maximal function (1.1)
3/22 Lebesgue's differentiation theorem (1.2)
3/24 Good kernels and approximations to the identity (2)

3/29-4/2: Spring break

4/5 Review. Differentiability of functions. Functions of bounded variation (3.1)
4/7 Func. of bounded variation continued. The Cantor-Lebesgue function (3.2)
4/12 Absolutely continuous functions (3.2)
4/14 Differentiability of jump functions (3.3)

4/19 Rectifiable curves and the isoperimetric inequality (4).

Chapter 4: Hilbert spaces: an introduction
4/21 Hilbert space \(L^2 \) (1)
4/26 Hilbert spaces (2).
4/28 Fourier series and Fatou's theorem (3)
5/3 Linear transformations (5)
5/4 Compact operators (6)
5/10 No class
5/12 The Fourier transform on \(L^2 \) (Chapter 5, 1)
5/17 Abstract measure and integration theory (Chapter 6, summary)