Midterm

Name:

<table>
<thead>
<tr>
<th>Score</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
1. Denote by m_d the Lebesgue measure on \mathbb{R}^d.

(a) If $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, $m_1(A) = 0$ or $m_1(B) = 0$, show that $A \times B$ is measurable and $m_2(A \times B) = 0$.

(b) If $A, B \subset \mathbb{R}$ are open sets, show that $A \times B \subset \mathbb{R}^2$ is measurable and

$$m_2(A \times B) = m_1(A)m_1(B).$$

(c) (Extra credit) If $A, B \subset \mathbb{R}$ are bounded G_δ-sets, show that $A \times B$ is measurable and

$$m_2(A \times B) = m_1(A)m_1(B).$$

Proof:
2. Let $A = C$ and $B = \frac{1}{2} C$, where C be the Cantor middle third set. Show that

$[0, 1] \subset A + B$.

Therefore, there exist closed sets $A, B \subset \mathbb{R}$, with $m(A) = m(B) = 0$, but $m(A + B) > 0$.

(As usual, $A + B = \{a + b : a \in A, b \in B\}$ and $\frac{1}{2} C = \{\frac{1}{2} c : c \in C\}$.)

Proof:
3. Let $f : E \to \mathbb{R}$ be a function, where $E \subset \mathbb{R}^d$ is a measurable set. Define a function
$g : \mathbb{R}^d \to \mathbb{R}$ by

$$g(x) = \begin{cases}
 f(x) & \text{if } x \in E \\
 0 & \text{if } x \notin E.
\end{cases}$$

Show that f is measurable if and only if g is measurable.

Proof:
4. A function $f : \mathbb{R}^d \to \mathbb{R}$ is said to be Borel measurable if for each $a \in \mathbb{R}$, the set $\{ x : f(x) > a \}$ is a Borel set.

(a) If f is Borel measurable and B is a Borel set, show that $f^{-1}(B)$ is a Borel set.

(b) If f is Lebesgue measurable and B is a Borel set, show that $f^{-1}(B)$ is a measurable set.

(c) If f and g are Borel measurable, show that so is $g \circ f$ (assuming the composition is defined).

(d) If f is Lebesgue measurable and g is Borel measurable, show that $g \circ f$ is Lebesgue measurable (assuming the composition is defined).

Proof: