Proof: (vacuous proof)

For \(n \in \mathbb{N} \), \(n \geq 1 \), and so \(|n-1| + |n+1| \geq |n+1| \geq 2 \). Hence \(|n-1| + |n+1| \nless 1 \).

Proof: (vacuous proof)

For \(r \in \mathbb{Q}^+ \), \(r^2 - r + 1 = (r - \frac{1}{2})^2 + \frac{3}{4} \geq \frac{3}{4} > 0 \) and so \(r^2 + 1 r \). Hence \(\frac{r^2+1}{r} \nless 1 \).

Case 3: \(n = 0 \). Then \(\frac{3n^2(n^2+1)}{4} = 1 \) is odd. Hence the implication is true.

Case 2: \(n = 1 \). Then \(\frac{3n^2(n^2+1)}{4} = 9 \) is odd. Hence the implication is true.

Case 3: \(n = 2 \). Then \(\frac{3n^2(n^2+1)}{4} = 36 \) is even, and \(\frac{3n^2(n^2+1)}{4} = 100 \) is even. Hence the implication is true.

Assume that \(3x+1 \) is even. Then \(3x+1 = 2k \) for some \(k \in \mathbb{Z} \). Hence \(5x - 2 = 3x + 2x - 4 + 1 = 2(k + x - 2) + 1 \) is odd because \(k + x - 2 \in \mathbb{Z} \).

Assume that \(5x - 2 \) is odd. Then \(5x - 2 = 2k + 1 \) for some \(k \in \mathbb{Z} \). Hence \(3x + 1 = (5x - 2) - 2x + 3 = 2(k - x + 2) \) is even because \(k - x + 2 \in \mathbb{Z} \).

Assume that \(n \notin \mathbb{A} \). Then \(n \in B = \{2, 3, 6, 7\} \). Hence \(\frac{2^2 + 3(2)-4}{2} = 3, \frac{3^2 + 3(3)-4}{2} = 7, \frac{6^2 + 3(6)-4}{2} = 25 \), and \(\frac{7^2 + 3(7)-4}{2} = 33 \) are all odd.

Case 1: \(n \) is even. Then \(n = 2k \) for some \(k \in \mathbb{Z} \). Hence \(n^3 - n = n(n^2 - 1) = 2k(4k^2 - 1) \) is even \(b/c k(4k^2 - 1) \in \mathbb{Z} \).

Case 2: \(n \) is odd. Then \(n = 2k + 1 \) for some \(k \in \mathbb{Z} \). Hence \(n^3 - n = n(n^2 - 1) = n((2k + 1)^2 - 1) = 2n(2k^2 + 2k) \) is even \(b/c n(2k^2 + 2k) \in \mathbb{Z} \).

Since \(3x + 4y \) and \(4x + 5y \) are even, we have \(x = (-5)(3x + 4y) + 4(4x + 5y) \) is also even, and \(y = 4(3x + 4y) - 3(4x + 5y) \) is also even.

the result proved is \(\forall x \in \mathbb{Z}, x \) is even \(\iff 3x^2 - 4x - 5 \) is odd.

however, in the proof, there is a mistake of using the term "converse", instead the term "inverse" should be used.

\(\forall x, y \in \mathbb{Z}, x \) is even or \(y \) is even \(\Rightarrow xy^2 \) is even.

the result attempted is \(\forall x, y \in \mathbb{Z}, x \) is even or \(y \) is even \(\Rightarrow xy^2 \) is even.

and the attempted proof is wrong. Since the role of \(x \) and \(y \) are not the same and so cannot be interchanged by simple relabeling, we cannot use assume that \(x \) is even using WLOG!!!