8.3: # 8.36 proof by example

Proof: 11 is an odd integer whose digit-sum is 2 (even) and whose digit-product is 1 (odd).

8.3: # 8.48 direct proof

Proof: Let \(n \) be an even integer. then \(n = 2k \) for some \(k \in \mathbb{Z} \). Hence \(n = 2k = 2(k - 1) + 2(1) \) is the sum of two even integers because \(k - 1, 1 \in \mathbb{Z} \).

8.3: # 8.52 proof by counter-example

Disproof: Take \(a = 3 \) and \(c = 1 \), then there is NO positive \(b \) such that \(a + b = 3 + b = 1 = c \) because \(b = c - a = 1 - 3 = -2 \).

8.3: # 8.56 proof by contradiction

Disproof: Assume the contrary that there exists \(x \in \mathbb{R} \) such that \(x^2 < x < x^3 \). Note that \(x \neq 0 \) because \(0^2 = 0 = 0^3 \). Hence \(x^2 > 0 \), and so \(x^2 < x^3 \) implies that \(1 < x \). Consequently, \(x < x^2 \), contradicting that \(x^2 < x \).

8.3: # 8.60 proof by contrapositive

Proof: contrapositive: if \(A \neq \emptyset \) then there exists \(B \) such that \(A - B \neq \emptyset \).

Assume that \(A \neq \emptyset \). Now take \(B = \emptyset \) and so \(A - B = A \neq \emptyset \).

8.3: # 8.66 proof by counter-example

Disproof: Take \(A = \{1\}, B = \{2\} \). Then \(\mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} \), but \(\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}\} \).

8.3: # 8.70 proof by counter-example

Disproof: Take \(A = \{1\}, B = \{2\}, C = \{3\} \). Then \(A \cup (B - C) = \{1\} \), but \((A \cup B) - (A \cup C) = \{2\} \).

8.3: # 8.76 proof by example

Proof: Take \(x = 51, y = 50 \). Then \(51^2 - 50^2 = 101 \).

8.3: # 8.78 direct proof

Proof: Since \(p \) is odd and positive, \(p = 2k + 1 \) for some \(k \geq 1 \). Take \(a = k + 1 \) and \(b = k \) both positive integers, and \(p = 2k + 1 = (k + 1)^2 - k^2 = a^2 - b^2 \).

Remark: The proof does not use the fact that \(p \) is prime. Hence the conclusion is true for any odd positive integer greater 1.

8.3: # 8.80 direct proof

Proof: 5\(| \) (sum of 5 consecutive integers)

Sum of 5 consecutive integers \(= n + (n + 1) + (n + 2) + (n + 3) + (n + 4) = 5n + 10 = 5(n + 2) \) for some \(n \in \mathbb{Z} \). Hence 5\(| \) (sum of 5 consecutive integers) because \(n + 2 \in \mathbb{Z} \).

6 \(\not| \) (sum of 6 consecutive integers)

Sum of 6 consecutive integers \(= n + (n + 1) + (n + 2) + (n + 3) + (n + 4) + (n + 5) = 6n + 15 \) for some \(n \in \mathbb{Z} \). Hence Sum of 6 consecutive integers \(= 6(n + 2) + 3 \), and so 6 \(\not| \) (sum of 6 consecutive integers).