Improved Linear Algebra Methods for Redshift Computation from Limited Spectrum Data

Miranda Braselton, Kelley Cartwright, Michael Hurley, Maheen Khan, Miguel Angel Rodriguez, David Shao, Jason Smith, Jimmy Ying, Genti Zaimi

December 8, 2006
Drs. Way and Srivastava (2006) compared different statistical models to approximate the redshifts of galaxies.

Computational limitations prevented them from using one particular model, known as Gaussian process regression, for large data sets.

We will present several efficient methods that allow us to overcome these limitations.
I. The Problem:
 A. Photometric Redshift - Miranda Braselton
 B. Gaussian Process - Jason Smith
 C. Gaussian Elimination - Miguel Angel Rodriguez
 D. Polynomial Kernel - Kelley Cartwright

II. The Solution:
 A. Reduced Rank - Genti Zaimi
 B. Cholesky Update - Maheen Khan
 C. Conjugate Gradient - Jimmy Ying
 D. Gibbs Sampler - Michael Hurley
 E. Testing Results - David Shao
What is a redshift?

- A redshift is the change in wavelength divided by the initial wavelength
- Indicates that an object is moving away from you

The Doppler Effect: the light waves emitted by the moving object shift
Why are they important?

- Scientists can determine many characteristics of galaxies and our universe.
- This information is useful for understanding the structure of the universe.
Spectroscopy vs. Photometry

- Uses diffraction grating to collect data from few objects
- Uses filters to collect data from multiple objects

Diffraction grating

Photometric Filters
SPECTROSCOPY VS. PHOTOMETRY

- More accurate
- Faster and cheaper
Photometric data collected from a galaxy: area under each filter curve gives us 5 numbers \((u, g, r, i, z)\) that are used in our calculations.
Scientists need to find a better mathematical model for the photometric data that will estimate the redshift.

Linear and quadratic regression, Artificial Neural Network Approach (ANNz), the ensemble model, *Gaussian process*.
Goal: Predict the redshift of a galaxy from a photometric measurement \((u, g, r, i, z)\) based upon the known redshifts of other galaxies.

The statistical model developed for this project is based on Gaussian process.
Gaussian Process

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian (i.e. bell shaped) distribution.
The Model

Predicted photometric redshift is given by

$$\hat{y} = \kappa^T (\lambda^2 I + K)^{-1} y$$

- K and y come from a training set.
- κ comes from a new photometric measurement.
Major calculation is reduced to solving the following system:

$$(\lambda^2 I + K)w = y$$

up to 180,000 equations and 180,000 variables.
Gaussian Elimination

<table>
<thead>
<tr>
<th></th>
<th>general n</th>
<th>$n = 1000$</th>
<th>$n \approx 180,000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations count</td>
<td>$\frac{2}{3}n^3$</td>
<td>7×10^8</td>
<td>4×10^{15}</td>
</tr>
<tr>
<td>Storage</td>
<td>n^2</td>
<td>10^6</td>
<td>3×10^{10}</td>
</tr>
</tbody>
</table>
Out of memory!

at $n \approx 11,000$
Find efficient ways to solve linear systems for large n.

MIGUEL ANGEL RODRIGUEZ
CAMCOS REPORT DAY, DECEMBER 8, 2006
The covariance matrix, K

- K models the interdependencies between the data.
- Its properties depend on a kernel function of the training data

$$K = \Sigma(u, g, r, i, z)$$

- Choices of Σ give different models.
The polynomial kernel

- K is low rank:
 \[
 K = QQ^T
 \]

 where Q is n by 21.
- Q can be obtained quickly from the training data.
- Storage requirement for Q is less than K.
- This special structure of K leads to fast linear solvers.
Our challenge is to solve

$$(\lambda^2 I + QQ^T)w = y$$

quickly for large n.
Big-O Notation

A procedure is $O(n)$ if the number of operations required is proportional to the input size n.

Let $n = 10^6$, then

<table>
<thead>
<tr>
<th>$O(n)$</th>
<th>10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n^3)$</td>
<td>10^{18}</td>
</tr>
</tbody>
</table>
\[
(\lambda^2 I + QQ^T)^{-1} y = \frac{1}{\lambda^2} \left[y - Q \left((\lambda^2 I + Q^T Q)^{-1} (Q^T y) \right) \right]
\]
ADVANTAGES

- This method is $O(n)$, VERY FAST.
- Storage requirement is $O(n)$.

DISADVANTAGE

- Numerical instability
Iterative Refinement is a method for improving the accuracy of a solution produced by solving a linear equation.

<table>
<thead>
<tr>
<th>Size</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.7×10^{-6}</td>
<td>9.1×10^{-9}</td>
</tr>
<tr>
<td>100</td>
<td>1.2×10^{-5}</td>
<td>2.2×10^{-8}</td>
</tr>
<tr>
<td>500</td>
<td>1.1×10^{-4}</td>
<td>2.8×10^{-7}</td>
</tr>
<tr>
<td>1000</td>
<td>3.5×10^{-4}</td>
<td>8.4×10^{-7}</td>
</tr>
<tr>
<td>5000</td>
<td>4.2×10^{-3}</td>
<td>1.3×10^{-5}</td>
</tr>
</tbody>
</table>

Table: Error before and after iterative refinement
Speed Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>n = 1000</th>
<th>n = 10,000</th>
<th>n = 180,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian Elimination</td>
<td>0.1510</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Reduced Rank w/ Iterative Refinement</td>
<td>0.0035</td>
<td>0.0047</td>
<td>0.1173</td>
</tr>
</tbody>
</table>

Table: Running time (in seconds) for finding \mathbf{w}
Find L_1, D_1 so that $LDL^T + qq^T = LL_1 D_1 L_1^T L^T$, where

$$L_1 = \begin{pmatrix}
1 & 1 & 1 \\
p_2 \beta_1 & p_3 \beta_1 & p_3 \beta_2 \\
p_3 \beta_1 & p_3 \beta_1 & p_3 \beta_2 & \ddots & \ddots \\
p_n \beta_1 & p_n \beta_2 & \ldots & p_n \beta_{n-1} & 1
\end{pmatrix}$$

- Storage: only p, β vectors and diagonal entries of D_1 are stored which is $O(n)$
- Operations: finding p, β and D_1 is $O(n)$
CHOLESKY RANK-ONE UPDATE FOR

\[A = \lambda^2 I + QQ^T = \lambda^2 I + \sum_{i=1}^{21} (q_i q_i^T) \]

\[\lambda^2 I + q_1 q_1^T = L_1 D_1 L_1^T \]
CHOLESKY RANK-ONE UPDATE FOR

\[A = \lambda^2 I + QQ^T = \lambda^2 I + \sum_{i=1}^{21} (q_i q_i^T) \]

\[
\lambda^2 I + q_1 q_1^T + q_2 q_2^T = \\
L_1 L_2 D_2 L_2^T L_1^T
\]
Cholesky Rank-One Update for

\[A = \lambda^2 I + QQ^T = \lambda^2 I + \sum_{i=1}^{21} (q_i q_i^T) \]

\[\lambda^2 I + q_1 q_1^T + q_2 q_2^T + q_3 q_3^T = \]

How many?

\[L_1 L_2 L_3 D_3 L_3^T L_2^T L_1^T \]
Cholesky Rank-One Update for

\[A = \lambda^2 I + QQ^T = \lambda^2 I + \sum_{i=1}^{21} (q_iq_i^T) \]

\[
\lambda^2 I + q_1q_1^T + q_2q_2^T + \ldots + q_{21}q_{21}^T =
\]

Just 21!

\[
L_1 L_2 \ldots L_{21} D_{21} L_{21}^T \ldots L_2^T L_1^T
\]
Solving for \((L_1 L_2 \ldots L_{21} D_{21} L_{21}^T \ldots L_2 L_1^T)w = y\)

\[
\begin{pmatrix}
1 \\
p_2 \beta_1 & 1 \\
p_3 \beta_1 & p_3 \beta_2 & 1 \\
\vdots & \vdots & \ddots & \ddots \\
p_n \beta_1 & p_n \beta_2 & \ldots & p_n \beta_{n-1} & 1
\end{pmatrix}
\begin{pmatrix}
w_1 \\
w_2 \\
w_3 \\
\vdots \\
w_n
\end{pmatrix}
=
\begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_n
\end{pmatrix}
\]

\[w_j = y_j - p_j(\beta_1 w_1 + \beta_2 w_2 + \ldots + \beta_{j-1} w_{j-1})\]
ADVANTAGES

- This method is $O(n)$, FAST.
- Storage requirement is $O(n)$.
- Numerically more stable.
Speed Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>n = 1000</th>
<th>n = 10,000</th>
<th>n = 180,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian Elimination</td>
<td>0.1510</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Reduced Rank w/ Iterative Refinement</td>
<td>0.0035</td>
<td>0.0047</td>
<td>0.1173</td>
</tr>
<tr>
<td>Cholesky Update</td>
<td>0.2066</td>
<td>0.4437</td>
<td>6.2529</td>
</tr>
</tbody>
</table>

Table: Running time (in seconds) for finding \(w \)
A semi-iterative method that works well with special (i.e. positive definite) linear system.

In practice, it takes a small number of iterations to get an acceptable solution.

Each iteration involves a matrix-vector multiplication.

In general, matrix-vector multiplication requires $O(n^2)$ operations.
Fast Multiplication

The special form of A gives fast matrix-vector multiplication which requires $O(n)$ operations:

$$Au = \lambda^2 u + Q(Q^T u)$$
CONJUGATE GRADIENT METHOD

ADVANTAGES

- It is $O(n)$, FAST.
- Storage requirement is $O(n)$.
- It converges quickly to the actual solution.

DISADVANTAGE

- Susceptible to rounding error for badly behaved matrices.
Speed Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>n = 1000</th>
<th>n = 10,000</th>
<th>n = 180,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian Elimination</td>
<td>0.1510</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Reduced Rank w/ Iterative Refinement</td>
<td>0.0035</td>
<td>0.0047</td>
<td>0.1173</td>
</tr>
<tr>
<td>Cholesky Update</td>
<td>0.2066</td>
<td>0.4437</td>
<td>6.2529</td>
</tr>
<tr>
<td>Conjugate Gradient</td>
<td>0.2487</td>
<td>0.3058</td>
<td>10.4278</td>
</tr>
</tbody>
</table>

Table: Running time (in seconds) for finding \mathbf{w}
Predict the mean of a population using the average of a sample.

Random (unbiased) sample must be used.

The sample is generated from a simulated distribution of the population.
THE GIBBS SAMPLER

- Solve special (i.e. symmetric positive definite) linear system using the covariance matrix of a sample of vectors.

- Vectors are generated from simulated normal distributions with means and standard deviations derived from the given linear system.
Gibbs Sampler Method

Works properly if

\[1 < \frac{\text{max eigenvalue}}{\text{min eigenvalue}} < 100 \]

Advantage
- Works well for the exponential kernel, the above ratio \(\approx 50 \).

Disadvantage
- Works badly for the polynomial kernel, the above ratio \(\approx 10^{10} \).
HOW TO MEASURE A METHOD’S PERFORMANCE

Given separate training and testing datasets, each with ugriz and redshift values.

1. Fit model using training dataset.
2. Use model to predict redshift values for ugriz of testing dataset.
3. Average the square of the errors, then take square root to obtain root mean square error (RMS).
4. Resample using bootstrap 100 times.
Quadratic Regression vs Gaussian Process

- Quadratic regression
 - Simplest model with $ugriz$ and interactions.
 - Baseline method for comparison.

- Gaussian process
 - Polynomial kernel
 - Three improved linear algebra methods: Reduced Rank, Cholesky Update, and Conjugate Gradient.
Time for 100 Bootstrap RMS Calculations

<table>
<thead>
<tr>
<th>Training Set Size (baseline)</th>
<th>QR</th>
<th>Reduced Rank</th>
<th>Cholesky Update</th>
<th>Conjugate Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>5000</td>
<td>11</td>
<td>12</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>10000</td>
<td>14</td>
<td>15</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>50000</td>
<td>37</td>
<td>44</td>
<td>165</td>
<td>202</td>
</tr>
<tr>
<td>100000</td>
<td>68</td>
<td>83</td>
<td>387</td>
<td>578</td>
</tr>
<tr>
<td>180045</td>
<td>116</td>
<td>142</td>
<td>690</td>
<td>1055</td>
</tr>
</tbody>
</table>

Table: Time (in seconds) for 100 bootstrap RMS calculations
Behavior for Reduced Rank as training set size increases is the same as for Cholesky Update and Conjugate Gradient.

As training set size increases, range of RMS decreases.
Compare Quadratic Regression, Reduced Rank, Cholesky Update, and Conjugate Gradient for **small** training set size.

RMS has **wide range** from 0.02 to 0.3.
Compare Quadratic Regression, Cholesky Update, and Conjugate Gradient for large training set size.

RMS has narrow range from 0.0240 to 0.0256.

Reduced Rank not shown because of larger RMS range.
We are able to solve large linear systems fast in a limited memory environment.

The performance of Gaussian process improves as the size of training sample increases.

Gaussian process performs better than quadratic regression when small training set is used, **BUT** it does not when large training set is used.
Future directions

- Explain the data.
- Use optimal value of λ.
- Try exponential kernel function.
We would like to thank the **Woodward Fund** for the financial support and the following people for their guidance.

- Drs. Michael Way, Ashok Srivastava, Tim Lee, Paul Gazis (NASA scientists)
- Dr. Tim Hsu (CAMCOS director)
- Drs. Bem Cayco, Wasin So (Faculty advisors)
- Drs. Leslie Foster, Steve Crunk (SJSU faculty)
THANK YOU!

Any Questions?