Computer Project: Schur Complements

Name

Purpose: To learn what Schur complements are and their connection with row reduction.

Prerequisite: Section 2.4

MATLAB functions used: inv, eye, zeros, -, *, and schurdat from Lay's Toolbox

Background. This is based on Exercise 15 in Section 2.4. Let \(A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \) be a partitioned matrix in which \(A_{11} \) is square and invertible. Define the Schur complement of \(A_{11} \) in \(A \) to be \(S = A_{22} - A_{21}A_{11}^{-1}A_{12} \). Here you will see three ways to calculate the matrix \(\begin{bmatrix} A_{11} & A_{12} \\ O & S \end{bmatrix} \), where \(O \) is the zero matrix having the same shape as \(A_{21} \).

1. (MATLAB) Type schurdat to get \(A_{11} = \begin{bmatrix} 0 & -1 \\ 1 & 3 \end{bmatrix}, A_{12} = \begin{bmatrix} 4 & 1 & -1 \\ -2 & 0 & 3 \end{bmatrix}, A_{21} = \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}, \) and \(A_{22} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \). In MATLAB they will be stored as \(A_{11}, A_{12}, A_{21}, A_{22} \).

 (a) Type \(A = [A_{11} \ A_{12}; A_{21} \ A_{22}] \) to create \(A \). Inspect to see that this does look like \(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \), and use dotted lines to mark the partitions in \(A \):

 \[
 A = \begin{bmatrix} \end{bmatrix}
 \]

 (b) One way to get the Schur complement \(S \) for the matrix here would be to just calculate it directly, using the definition above. Type the following line to do that, and record the result:

 \[
 S = A_{22} - A_{21} \text{inv}(A_{11}) \ast A_{12}
 \]

 \[
 S = \begin{bmatrix} \end{bmatrix}
 \]

2. (hand) Assume now that \(A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \) is any partitioned matrix in which \(A_{11} \) is square and invertible. Let \(L, I \) and \(O \) be of appropriate sizes so that \(\begin{bmatrix} I & O \\ L & I \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \) is defined. Find a formula for \(L \), in terms of the \(A_{ij} \)'s, so that

 \[
 \begin{bmatrix} I & O \\ L & I \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ O & S \end{bmatrix}
 \]

 is true; show work:
3. (MATLAB) A second way to get the Schur complement S of A_{11} in A to would be to use your formula from question 2 to calculate L, then create $C = \begin{bmatrix} I & O \\ L & I \end{bmatrix}$, and then calculate CA. Do this for the matrix in question 1. You figure out a command to calculate L and record your command below. A way is shown to create C and CA:

$$L = \quad C = \begin{bmatrix} \text{eye(2)} & \text{zeros(2,2)}; \text{L, eye(2)} \end{bmatrix}$$

Inspect CA to verify that it does look like $\begin{bmatrix} A_{11} & A_{12} \\ O & S \end{bmatrix}$, where S is the same matrix as you got in questions 1 and 2. Record results.

$$L = \quad C = \quad CA =$$

4. (hand) A third way to calculate the Schur complement S of A_{11} in A is to use row operations in a special way. This method actually does the least arithmetic so is the most efficient method. The idea is: don’t change anything in $[A_{11} \ A_{12}]$ but just add multiples of appropriate rows of $[A_{11} \ A_{12}]$ to rows of $[A_{21} \ A_{22}]$ so as to create a block of zeros below A_{11}. Notice this is not the usual Row Reduction Algorithm because nothing will change in the top block $[A_{11} \ A_{12}]$.

Verify that this method works for the matrix A from question 1. The first step is shown; you finish. Record each matrix you create and inspect your final matrix to be sure it does look like $\begin{bmatrix} A_{11} & A_{12} \\ O & S \end{bmatrix}$:

$$A = \begin{bmatrix} 0 & -1 & 4 & 1 & -1 \\ 1 & 3 & -2 & 0 & 3 \\ 2 & 0 & 1 & 2 & 3 \\ -1 & 1 & 4 & 5 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 4 & 1 & -1 \\ 1 & 3 & -2 & 0 & 3 \\ 0 & -6 & 5 & 2 & -3 \\ -1 & 1 & 4 & 5 & 6 \end{bmatrix}$$

5. (hand) Assume now that $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ is any partitioned matrix in which A_{11} is invertible. Prove that the method described in question 5 will always work, to get a block of zeros below A_{11}. That is, if A_{11} is invertible, you can always do row operations to A as described in question 5, to get the form $\begin{bmatrix} A_{11} & A_{12} \\ O & W \end{bmatrix}$. Also explain why the block W obtained this way must be the Schur complement of A_{11} in A. Attach an extra sheet. (Hint: you must use the invertibility of A_{11} somehow!)