Math 211A Second Homework

1. Let C be the curve $x^4 + y^3 = xy$ in a complex affine plane E.
 (i) Find the multiple points of C.
 (ii) Find the asymptotic directions (lines) of C.
 (iii) Check if the intersection points of the asymptotic directions of C and the projective closure \hat{C} of C are single (the intersection is taken in \hat{E}), i.e. if the intersection multiplicities are one.

2. Solve problem 1 for the curve $x^2 + y^3 = z^4$ in a complex three dimensional affine space E.

3. (The last case of Desargues’ Theorem) Let P be a projective space, and D, D', and D'' be three coplanar lines in P (i.e. $\nu(D \cup D' \cup D'')$ is a two dimensional projective plane) that have a common point O. Let $A, B \in D$, $A', B' \in D'$, and $A'', B'' \in D''$, be points distinct from one another and from O, and let $I = D_{AA'} \cap D_{BB'}$, $J = D_{AA''} \cap D_{BB''}$, and $K = D_{A'A''} \cap D_{B'B''}$. If O lies on the line through I and J prove that I, J, and K are collinear.